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Abstract

Asynchronous logic has for some time been promoted as being able to take advant

average case performance. Unfortunately the overheads of using asynchr

techniques, such as the return to zero phase and unnecessary synchronisations, ha

outweighed the benefits. The aim of the research described is to take full advantage

performance benefits attainable through the use of asynchronous methodologies, t

overcome the overheads introduced.

The thesis introduces the Early Output design methodology which allows the gener

of circuits which synchronise the production of outputs with the minimal set of inp

thus generating the result as soon as possible. The throughput problem is tackled th

a series of optimisations. The optimisations allow the removal of unneces

synchronisation points which degrade performance. One novel optimisation is the

token latch which allows further improvements in performance by inhibiting operat

once their results are found to be unnecessary.

To determine where the optimisations should be applied, a novel dynamic ana

technique was developed. This targets improving average case performance th

simulating the design running a benchmark and attaining the Slowest Path (a seque

elements which contributed to the delay of the simulation run).

The effect of the optimisation is demonstrated on a range of circuits presenting

optimisation’s applicability to various commonly used structures.

The result of these techniques is a system capable of generating circuits which gen

perform faster than their synchronous equivalents.
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Chapter 1: Introduction

1.1 Justification

For a number of years the VLSI design community has been looking tow

asynchronous logic to solve some of the problems that arise when using global cloc

very large circuits [1]. There are some advantages inherent in asynchronous circuit

their synchronous counterparts. Lower emissions of electromagnetic noise [2][3][4

clock distribution (saving area and power) [5], no clock skew [5], robustness

environmental variations (e.g. temperature and power supply) or transistor varia

better modularity [6] and better security [7][8] are just some of the properties for wh

most asynchronous designs have shown advantages over synchronous design

ability to show these advantages over synchronous designs in a number of properti

been demonstrated. Low power, low latency [9][10] and high throughput [11] are t

properties which have been claimed but need to be specifically targeted in order to e

them at the expense of the others. It is important to distinguish the difference bet

throughput and latency rather than just calling them performance. The Amulet group

in the past, created three low power microprocessors using low power asynchro

techniques [2][13]. Others have used fine grain pipelining to achieve high throughp

the cost of latency and power consumption [11][12]. By trying to exploit all th

properties the final design will hold little if any advantage over the synchron

implementation. Alternatively by trying to exploit just one of these properties it

possible to gain it at cost to the others.

• The power consumption of synchronous circuits is often higher than asynchro

equivalents as the full global clock network has to be driven at a very high rate

many pipeline stages are executed in instances where the result is not d

[2][10].
Chapter 1:  Introduction 11
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• Low latency can be achieved by exploiting the average case performance pres

some asynchronous circuits [14].

• High throughput is present in circuits with very high density pipelining, which

made difficult by the presence of a global clock skew.

1.2 Synchronous logic

The basis of computing is combinatorial logic which takes a set of inputs and, depen

on the state of these inputs, generates appropriate outputs. For very simple systems

perform only one function and do not keep state this is sufficient. More complex sys

require some form of timing to partition the circuit temporally. The partitioning allow

single piece of combinatorial logic to be used for several different operations

different operands being passed though an ALU) or keep state and use the results

previous operation as the next set of inputs (e.g. a cyclic multiplier). The alternativ

using such schemes are usually not realistic (e.g. creating a separate ALU for

executed instruction in a fixed program). The timing in the system can come fro

number of sources.

Synchronous circuits rely on external timing to determine the completion of each pip

stage and registers to stop data from one stage overwriting the data in the next sta

1.2.1 Synchronous logic construction

In the diagram of a synchronous circuit (Figure 1.1) the clock net is connected to e

flip-flop. As the clock ‘ticks’ the data changes from being the results of one stage to

inputs of the next, this construction is called a pipeline. Pipelines not only divide

system temporally but also spatially. A large operation, which has already been rec

temporally by passing different data though it, can also be divided spatially by allow

many operations to pass though different parts of the unit at the same time. This

common method of increasing throughput at the penalty of latency due to the added

of the latches.

Figure 1.2 shows how data moves from one stage to the next by shifting all data t

next stage at the rise of the clock. A global clock is used to ensure that sufficient tim
Chapter 1:  Introduction 12
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given for the result to be correct by the time it is accepted by the next stage and a

holds only one data entry.

1.2.2 Synchronous pipeline properties

In figure 1.2 the coloured blocks represent a series of operations passing thro

pipeline. The shaded areas of each stage represent the stage having completed its

operation and the result being valid but waiting for the clock before it can move to the

stage. For example, when ‘D0’ passes through Stage 1 its result is ready ~1/4 of a clock

cycle before the next clock edge arrives. During this time, the data is unable to pro

to the next stage. When ‘D0’ passes through Stage 3 it requires the entire clock cy

perform its operation. This operation passes along the critical path and if the c

frequency was increased, circuit operation would fail because the result of the lo

operation would not be ready in time to be accepted into the next latch. These oper

may occur very rarely, but they force the clock to have a longer period in all cycle

always guarantee correct operation. This critical path delay must be found for the

operating conditions of the circuit. This requirement usually degrades performance

further.

1.3 Asynchronous circuits

Asynchronous logic is a very broad term which can be used to describe any circuit w

has the ability to keep and change state without the use of a global clock. An

Figure 1.1: Synchronous pipeline
Chapter 1:  Introduction 13
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generally accepted term is “self-timed”. This is more descriptive of the nature of t

circuits as even asynchronous circuits synchronise.

1.3.1 Requirements of asynchronous circuits

As stated above the synchronous approach gives a timing reference which estima

completion of a stage and ensures the stages are separated. If the timing an

separation properties can be reproduced without using a global clock it will allow

pipeline to execute faster than worst case performance. Stage completion c

determined in many ways: The easiest method is a matched delay; a series of

provides a delay to match the stage logic depth. When external variables su

temperature or voltage slow down the circuit, this delay increases to allow the logic

time to resolve the result. A more complex method is to use a data dependent ma

delay which employs several matched delay lines, one of which is chosen dependi

the data or the operation conducted. For example, if an ALU stage executed a fast, l

operation rather than a slow, arithmetic one then a shorter delay would be chosen.

The most precise method of completion detection is not to use matched delays but

the logic to create a completion signal. The last two methods allow the data depe

speed improvements. Figure 1.3 shows an example of an asynchronous pipeline

global clock is replaced with a set of asynchronous pipeline control elements. Once

data enters a stage, the request signal is generated on the wire labelled Req1 in figu

This signal goes through a matched delay, or is combined with a completion dete

Figure 1.2: Synchronous pipeline occupancy diagram

D0 D1 D2 D3 D4 D5

Time

Stage 1

Stage 2

Stage 3

Stage 4

Clock

D0 D1 D2 D3 D4 D5

D0 D1 D2 D3 D4 D5

D0 D1 D2 D3 D4 D5

0 1 2 3 4 5 6 7 8 9
Time
Chapter 1:  Introduction 14
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signal, and, when the logic function has been evaluated, the request signal is emit

wire Req2. The data is now ready to be accepted for use in the next stage.

This approach solves the completion detection problem but there is still the proble

one piece of data overwriting another in the next pipeline stage. To solve this

acknowledge signal (Ack) is sent back to the requesting control unit to signal that i

accepted the data and that stage can be used for the next data. In turn the data that h

accepted is used in the next stage by emitting its request and the cycle then begins

next stage. This is calledhandshakingand is used in asynchronous systems to guaran

a correct transfer of information while making no assumptions in the communica

protocol on the delay of either the sender or the receiver.

1.3.2 Properties of asynchronous pipelines

Figure 1.4 shows an asynchronous pipeline executing the same computation a

synchronous pipeline in figure 1.2, there are noticeable differences between the

traces. Firstly, the asynchronous pipeline is faster as the optimisations described abo

implemented. The speed improvement is due to the completion of each stage

determined on an individual basis rather than estimating the worst case delay o

slowest stage (using a global clock).

Unlike the synchronous pipeline, there are two different types of stalls in

asynchronous pipeline both of which were dealt with simply by using a clock in

synchronous version. The first is demonstrated in stage 2 after D0 has moved to st

Here the stage 2 hardware is ready to accept new data but D1 has not comple

Figure 1.3: Asynchronous pipeline
Chapter 1:  Introduction 15
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function in stage 1. This is astarvationas the hardware has to wait for the data to beco

available. In the figure this is demonstrated with the dashed lines across the stalling

The second type of stall is shown where D2 is trying to move from stage 1 to stage

the stage is not ready to accept new data as it is still processing D1. This causesblocking

as the data is ready but has to wait for the hardware to become available. In the fig

is shown with dashed lines across the stalling area with the data shading still pre

When the pipeline contains too few data elements then starvation is common an

throughput is low. When the pipeline contains too many data elements then bloc

appears often and causes high latency. A balanced pipeline would have low latenc

high throughput and so avoiding these stalls is important.

1.4 Aims of this research

From the advantages in performance, stated in the previous section, of asynchr

circuits over synchronous counterparts it would seem clear that all well bala

asynchronous circuits should operate much faster than synchronous designs

unfortunately is not the case and asynchronous circuits rarely reach the performa

synchronous equivalents and even then this is only in structures particularly suited

asynchronous approach. This has caused the advantages in latency and throughp

generally dismissed by the synchronous community.

The latency advantage due to average case performance has never been

demonstrated. While the data dependent timing was included in the Amulet 1 [15] a

Figure 1.4: Asynchronous pipeline occupancy diagram
Chapter 1:  Introduction 16
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[2] designs, in the last version (Amulet 3 [13] which was targeting higher performan

the data dependent delay was removed due to the complexity overhead outweighin

latency advantage. Other systems [23], which use bit level flow control, attempt to ex

unbalanced logical depth of individual outputs in stages to reduce latency.

unfortunately requires the logic to be constructed from special gates which indicat

completion of the result. These gates are so much slower than the normal gate

generally enforce synchronisation of all their inputs which causes them to have over

which outweigh their advantages.

The throughput advantage has also been dismissed by the synchronous comm

Although asynchronous circuits could implement much finer grained pipelining, m

circuits concentrated on in this thesis suffer from a reset phase separating compu

phases and often wasting more than half of the system capacity.

The aim of this research was to exploit the potential performance advantages o

asynchronous design methodology while tackling its weaknesses. The cu

methodologies were evaluated and their weaknesses were targeted. Firstly, the l

advantage was targeted and using the early output system this was improved. To d

power and area were not considered and all emphasis was only on the latency. La

tackle the throughput problem the circuits have a series of optimisations placed on

which remove unnecessary synchronisations through the use of anti-tokens and ear

latches.

The combination of all these factors produces circuits which perform faster than

synchronous counterparts.

1.5 Contributions made by this work

The thesis presents the following advancements in knowledge in the field

asynchronous logic:

• Early output circuit synthesis allowing stages to generate results before all in

are present. This includes the methodology, analysis of circuits constructed

this method and a number of considerations when using the technique.
Chapter 1:  Introduction 17
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• An understanding of the cause of missed early outputs where sufficient input

present yet the stage does not generate a result. And a method of generating c

which avoid this kind of behaviour.

• QDI guarding of early output circuits to allows the generation of more rob

circuits.

• Demonstration and analysis of an anti-token like behaviour in backward

guarded circuits where late arriving inputs do not block the entire stage f

continuing to operate.

• Anti-token latch designs, behaviour of anti-tokens and their effectiveness.

• Novel dynamic timing analysis technique based on a blame passing method.

• Optimisation system based on dynamic timing analysis.

1.6 Thesis Structure

This thesis will present a method of improving the performance of four-ph

asynchronous circuits at the gate-level composition. Most of the methods pres

primarily target dual-rail circuits, but the application of the methods to other syst

(namely control circuits and bundled data) will also be presented.

The thesis does not deal with architectural or transistor level optimisations. Pos

timing hazards and the timing assumptions made will be shown but the full metho

avoiding hazards in highly timing variable technologies will not be presented.

The rest of the thesis is structured as follows:

Chapter 2 explains the fundamentals of asynchronous logic which are used througho

thesis.

Chapters 3, 4 and 5 all present the particular aspects of three design styles. The

control circuits, bundled data, and dual rail.
Chapter 1:  Introduction 18
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Chapter 3 describes a conventional approach of constructing asynchronous circuit

Chapter 4 presents the early output design methodology.

Chapter 5 introduces anti-tokens and extends the early output methodology.

motivation for these is explained and their behaviour is described.

Chapter 6 evaluates the performance of the methods presented. It presents meth

analysing constructions and optimising them.

Chapter 7 concludes the thesis by summarising the contributions made and suggest

future work which could be conducted.
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Chapter 2: Fundamentals of
Asynchronous Systems

The asynchronous design methodology is based on the use of handshakes to comm

data. To enable hazard free operation, most of these handshakes make no assump

the speed of each communicating unit. This ‘delay insensitivity’ can be extended t

computing parts of the system. These constraints make the generation of logic

difficult and so a series of less restrictive delay models have been defined for use in

synthesis.

2.1 Asynchronous protocols

Communication in asynchronous systems is achieved using handshake signals.

handshakes are conducted between the source and the destination along two w

request signal is driven by the initiator of the transaction and the acknowledge sig

transmitted by the other end to signal the receipt of the request. The initiator can be

the source or destination unit.Pull channelhandshakes are initiated by the destinati

while push channel handshakes are initiated by the source.

Although the handshake channel construction using request and acknowledge wir

become standardised, there are two protocols commonly used on these channels.

2.1.1 Two-phase signalling

The two-phase protocol [17] uses signal transitions to indicate the request

acknowledge messages. Each transition (alternating between up-going and down-

of the request wire is acknowledged by a transition of the acknowledge wire to matc

state of the request.
Chapter 2:  Fundamentals of Asynchronous Systems 21
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Figure 2.1 shows the behaviour of the protocol on a simple push channel. The s

initiates the transaction by placing a transition on the request wire. Once the destin

has received the message it replies with a transition on the acknowledge wire.

completes the transaction and the states of the request and acknowledge wires matc

again. Once the source observes the transition on the acknowledge wire, it is a

initiate another transaction.

2.1.2 Four-phase signalling

In single phase clocked synchronous systems, the flip-flops driven by a clock only up

the state of their data output on the rising (or falling) edge of the clock. Using latc

which trigger on both clock edges would allow the clock speed to be halved and h

reduce the power consumption of the clock generation and distribution. Although

possible to create synchronous flip-flops which update their state on both edges

clock, thus reducing the power consumption of the design, most of these latch desig

expensive as they effectively recreate a double speed clock internally to genera

latching signal or duplicate the latching logic (one for each phase).

In asynchronous two-phase circuits, each latch creates a latching signal which trans

at double the rate of its inputs or two latching elements are used. The four-phase pr

takes this into account and communicates across the request and acknowledge wire

level rather than edge sensitive signals. This causes the protocol to become som

more complicated but allows the construction of latches to be greatly simplified.

Figure 2.1: Two-phase protocol
Chapter 2:  Fundamentals of Asynchronous Systems 22
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Figure 2.2 shows the behaviour of a four phase latch [19]. The sequencing of the re

and acknowledge signals is the same as that in the two-phase protocol, but the data

communicated once every two transitions. Additionally, the four-phase protocol h

number of schemes defining when the data is valid [18]. Theearly andlate data validity

schemes are used depending who has control of the bus on which the data is trans

Early data validity scheme is used when the source controls the data bus and so pla

data on the bus and then sends a request to the destination to accept the data. T

scheme is often used when the destination has control of the bus (in situations where

‘slaves’ wish to communicate with one ‘master’) and the source must first place a req

to drive the data lines. Only once the request is granted, indicated by a transition o

acknowledge wire, can the source drive the data lines. The third,broad, scheme is often

used as a scheme neutral method of communication. Although the early and late sc

are not compatible they can both receive data from a broad scheme source (assum

source has control of the data bus).

2.2 Delay models

Asynchronous circuits are often classified in order of the type of their ‘robustness’. M

robust circuits need less testing to ensure correct operation both during the design

and post production.

Figure 2.2: Early, Broad and Late Four-phase protocol
Chapter 2:  Fundamentals of Asynchronous Systems 23
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2.2.1 Delay-Insensitive

The ‘Delay-Insensitive’ (DI) class [20] is the most robust of all delay models. It make

assumptions on the delay of wires or gates. In this model all transitions have t

acknowledged before transitioning again. This condition stops unseen transitions

occurring. In DI circuits, any transition on an input to a gate must be seen on the o

of the gate before a subsequent transition on that input is allowed to happen. This

some input states or sequences to become illegal. For example OR gates must ne

into the state where both inputs are one, as the entry and exit from this state will not

seen on the output of the gate.

Although this model is very robust, no practical circuits are possible due to the h

restrictions. This does not leave the model as useless as it is often used for commun

protocols despite the fact that communicating modules may not delay-insensitive

example the interaction between the request and acknowledge is delay insensitive a

transition of each wire is acknowledged with a transition of the other wire.

2.2.2 Quasi-Delay-Insensitive

The Quasi-Delay-Insensitive (QDI) model is a compromise to delay-insensitivity with

addition of isochronic forks[21]. Isochronic forks allow signals to travel to man

destinations and be acknowledged by only one. Isochronic forks are forks in wires w

if the acknowledging target has seen a transition on their end of the fork, then

transition is assumed to have happened on the other ends of the fork too. There a

types of isochronic forks; the asymmetric type only ensures that the signal will reac

acknowledging fork tip before or at the same time as it will reach the other; the symm

type ensures that both fork tips will be reached at the same time. Symmetrical isoch

forks allow either of the targets to acknowledge the signal. In QDI circuits all forks h

to be either isochronic and acknowledged by one of the destinations, or acknowledg

both destinations.

2.2.3 QnDI

In the QnDI delay model isochronic forks can be extended through gates [22]. The

QnDI represents the number of gates allowed in the extended isochronic forks. The
Chapter 2:  Fundamentals of Asynchronous Systems 24
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usually asymmetric as, with an increasing level of complexity on the two path

becomes impossible to ensure symmetric fork behaviour. As the number of g

increases the robustness of circuits drops and requires more rigorous testing to ensu

the timing assumptions are maintained in the fabricated circuit.

2.2.4 Speed Independent

Speed-Independent (SI) [23] circuit design is one of the least robust models as it as

wires have no delay. This is increasingly difficult to justify with shrinking process feat

sizes. Designs manufactured in the latest process technologies have longer wire

than gate delays. Despite this the SI model is a popular delay model.

2.3 Fundamental asynchronous components

Construction of handshaking asynchronous circuits uses most of the generic synchr

components with the obvious exception of clocked elements (combinatorial gates

transparent latches). There are also a small number of additional elements which

become standard in the implementation of asynchronous circuits.

2.3.1 C-elements

The Muller C-element [23] is a commonly used asynchronous component. It is us

merge and synchronise signals switching its output only when all inputs have reache

same state. Figure 2.3 shows the implementation and symbol of the C-element.

Figure 2.3: Gate and transistor-level design of the C-element and its symbol
Chapter 2:  Fundamentals of Asynchronous Systems 25
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Asymmetric C-elements have inputs which affect the operation of the element only w

transitioning in one of the directions (shown in figure 2.4). Asymmetric inputs

attached to either the minus (-) or plus (+) strips of the symbol. When transitioning f

0 to 1 the C-element will take into account the common and the asymmetric plus in

Similarly when transitioning from one to zero the C-element will take into account

common and the asymmetric minus inputs.

2.3.2 Mutex

In asynchronous circuits arbitration is often required in situations where two requ

arrive asynchronously desiring access to a shared resource. As the signals can a

identical times and only one of the requests can be granted, a hardware element is u

guarantee the exclusivity of the grants.

Themutex(mutual-exclusion) element is used to arbitrate between two asynchrono

arriving signals. A simple gate level construction would involve two cross coup

NAND gates. Each signal tries to block the other from being granted which in gate

implementations can cause the outputs to become metastable if the signals arrive

a gate delay of each other. This metastability will eventually resolve but in the mean

the outputs of the NAND gates must pass through metastability filters. These keep

outputs low until the metastability has been resolved.

The circuit in figure 2.5 shows a design of a mutex element [24]. The metastability fi

comprise a pair of inverters which will drive their outputs high only once there i

Figure 2.4: Gate and transistor-level designs of an asymmetric C-element and its s
Chapter 2:  Fundamentals of Asynchronous Systems 26
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sufficient difference in voltage between the two outputs. This is done by attaching the

(power) signal of each inverter to the signal feeding its counterpart.

2.4 Formal specification and synthesis

The synthesis of small asynchronous units can be conducted using the Petrify [25

which as an input takes a “Signal Transition Graph” (STG). STGs are Petri net b

descriptions an example of which can be seen in figure 2.5.

The transition of each net is placed on the graph and these are then connected with

signifying which events trigger the transition. The tokens present on some arrows i

figure represent the initial placement which is the state of the graph at reset time. I

figure there also is a ‘place’. A place is a space for a token which allows the token to m

to one (and only one) of its outputs. In the mutex STG this allows the formation

mutually exclusive sequences of events. The place allows either the G1+ or

transitions to happen but not both. When the G+, R-, G- sequence has completed

token is inserted into the place to allow another sequence to begin.

Further details of STGs can be found in the referenced material [25].

Figure 2.5: Mutex element design and STG
Chapter 2:  Fundamentals of Asynchronous Systems 27
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Chapter 3: Asynchronous logic

As well as the many asynchronous communication protocols there are also a num

methods to encode the data in the communication channels. Bundled data and du

are two of the most popular and will be discussed later in this chapter. The basis

these protocols is exemplified in a system known ascontrol circuits. Control circuits do

not pass data and can only pass empty messages. Control circuits can then be alt

construct either bundled data of dual rail structures.

3.1 Control Circuits

Control circuits are asynchronously communicating networks which do not carry

data. This makes their construction very simple but their use is limited due to

inability to perform computation.

All computing circuits comprise two parts: storage elements (latches and flip-flo

which store data and computing elements which then perform computation. These

alternate forming pipeline stages. In the case of control circuits no computation is do

the logic stages and these are simply synchronisation points.

3.1.1 Tokens

Control circuits are incapable of passing data but the message handshake sign

present even though the hardware associated with data transfer is not present.

transfers can be thought of as tokens. Tokens can progress from one latch to the ne

can be split and re-converge with other tokens in logic stages.
Chapter 3:  Asynchronous logic 28
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3.1.2 Operation cycle

A stage using a four phase handshake protocol goes through 2 periods during

operation. These are thesetand theresetperiods. The set period encompasses the ti

where the inputs to the stage are arriving as the acknowledge is low. The reset per

a stage has the acknowledge high and the inputs start being removed.

Tokens need to be separated to stop their merging and becoming a single token. Be

the set period of each token a reset period is inserted. Each stage has to reset com

before another set can begin to ensure that data from the previous cycle does not eff

computation in the current cycle.

3.1.3 Latches

To pass tokens from one stage to another asynchronous latches are used to store th

while it is progressing. Each latch handshakes the transaction of its token with the

stage. These transactions are communicated across the request and acknowledge

described in section 1.3.

Half Latch

The ‘half-latch’ is a simple latch design and is shown in figure 3.1. With a requ

acknowledge interface on both the input and the output, the latch forwards the req

while acknowledging the input. The request out and the acknowledge in signals are

released once the input stage has released its request and the output has acknow

Figure 3.1: Half latch design
Chapter 3:  Asynchronous logic 29
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This simple behaviour enables the latch to allow the input stage to drop to the reset

(releasing the request) while the output stage enters the set phase (request be

asserted). This is demonstrated in figure 3.2 where each latch separates a stage

data from a stage hosting a spacer. The half cycle separation enables the half-latch t

half a token. Two half-latches are needed to store a single token (allowing the inpu

output to the two latch pipeline to be sequenced as seen in the figure) as each lat

only separate the phase of the input from the output by half a cycle. The front

separates the resetting phase stage in front of it from the setting phase behind i

second latch separates the setting phase in front of it from the resetting phase beh

The leading edge and trailing edge of the token can be separated by many la

allowing the token to stretch and shrink depending on the progress of the leading

trailing edges. The sequencing of the latch forces the separation of the edges by a

one logic stage. This ensures that tokens are kept separated (do not merge) and a

in at least one stage (do not die).

Semi and Fully Decoupled Latches

The half latch is only able to separate the data stage from a stage holding a spacer bu

latch designs are able to ‘decouple’ the two stages by more than one phase diffe

Figure 3.3 shows three levels of decoupling latches could be capable of. The first le

‘no decoupling’ where the output of the latch is the same state as the input. Although

behaviour is possible using a set of wires with no logic, it is important that any la

design maintains this ability. The half decoupling behaviour allows regions with da

be separated from regions holding a spacer. This is present in the half latch.

The third level of decoupling presented is the full decoupling where a latch sepa

stages with the same state by fully enclosing a token or a spacer. Semi-decoupled l

Figure 3.2: Half latch pipeline token capacity
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[16] can enclose either a spacer or a token while fully-decoupled latches can perform

actions.

3.1.4 Split

The transmission of a token to two or more latches requires the source latch to inte

correctly with more than one destination. While the request signal needs to be fork

all destinations, the acknowledge signals from all destinations need to be combin

generate the single acknowledge signal the source latch expects. The introduction o

in the request distribution requires that each transition of the request be acknowledg

all destinations. Only after all destinations have acknowledged may the request tran

again.

A C-element can be used to combine all the acknowledge signals. It will ensure th

destinations have acknowledged before forwarding the acknowledge to the source

(see figure 3.4). As the C-element is symmetrical to up and down transitions, it will

for all destinations to release the acknowledge before releasing its output. This en

that all destinations the request leads to have observed the signal before the r

transitions again.

3.1.5 Converge

Synchronisation of tokens is achieved by converging two or more pipelines into one

output latch will receive a request only once all input latches have presented their re

The output latch has to acknowledge all input latches by sending each latc

acknowledge signal. As described above both the rising and falling transitions on fo

Figure 3.3: Levels of latch decoupling
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signals have to be acknowledged. This again is done using a C-element to gath

requests of all inputs as illustrated in figure 3.5.

3.1.6 Complex constructions

A single pipeline stage can both split and converge many signals. The rules spe

above are simply applied to a single block of combinatorial logic surrounded by lat

(stage).

There are two approaches to applying both split and converge rules in a single

These are calledgrouping and separating. Of the two methods, grouping generall

Figure 3.4: Split example

Figure 3.5: Converge example
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generates circuits with lower power consumption and area, while separating gen

circuits with fewer synchronisations (and is thus faster).

Grouping

Grouping treats all inputs and outputs of a pipeline stage equally and ignores

dependencies. This generates one request signal which is shared between all outp

one acknowledge signal which is shared between all inputs. The common request

is formed by gathering all request signals using a C-element. Likewise for

acknowledge signal. This is demonstrated in figure 3.6.

As all inputs and outputs are driven by the same request and acknowledge wire

become synchronised. This can slow the circuit down as it is unable to exploit signa

dependencies.

Figure 3.6: Grouping example
Chapter 3:  Asynchronous logic 33
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Separating

The Separating method treats each latch individually and connects it only to co-depe

latches. The request of each input latch is connected only through a gathering C-ele

to all latches that depend on its data. The input latch’s acknowledge signal is genera

C-elements which gather the acknowledges of the dependent output latches.

technique is illustrated in figure 3.7.

This approach only synchronises latches where necessary and allows the acknowle

tokens earlier than in the grouped version. The need for each latch to have two se

C-elements to gather requests and acknowledgements creates a larger circuit. Fort

many optimisations can be carried out to reduce this impact: In cases where an inpu

contributes to only one output latch, the C-element will have to gather only one signa

can be optimised away to a wire. Also, in cases where many latches at a stage ha

same set of dependants they can use a single C-element to generate a common re

acknowledge signal.

Figure 3.7: Separating example
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3.2 Bundled data

The bundled data system [18] allows communication of data in systems with token

This also allows computation rather than just synchronisation. With the control part o

system already described, the generation of full computing circuits requires only the

communication and computation parts of the system.

Tokens are primarily designed as symbols representing data flow and systems s

control circuits can be easily adapted to carry data. Control circuits announce the pre

of and negotiate the progress of tokens but data latching and computation req

additional components.

3.2.1 Latches

To create bundled data latch designs, the control circuit designs are adapted by conn

a data latch to the component. The latch enable signal is taken from one of the

available in the design or a logical operation of several signals. Depending on the

chosen the latch will have a different data validity period (early, broad or late expla

in “Four-phase signalling” on page 22).

A bundled data half latch is shown in figure 3.8. All three schemes for generating the

enable signal are presented in the figure but in a normal design only one is req

Connecting the latch enable signal directly to the Ro wire will give an early data vali

and connecting it to the inverse of the Ro signal will give the late data validity where

enable being high causes the latch to become opaque. The broad validity can be ac

by latching on the OR of the Ro and Ao signals.

In the broad data validity scheme, the addition of the delay element, called the ‘bun

constraint’ delay, ensures that the data has been presented on the output before

signal is transmitted.

3.2.2 Logic

Logic in bundled data systems is constructed in much the same manner as in synch

circuits. Because the logic has delay, the request signal must be also slowed down in
Chapter 3:  Asynchronous logic 35
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to ensure the output of the data processing logic has been calculated before being l

to the next stage. This delay on the request signal is often referred to as amatched delay

as it ‘matches’ the delay of the logic. The delay of the logic must be shorter than the d

along the request line otherwise insufficient time would be allocated for the lo

operation.

As the delay is needed only on the rising transition, it can be constructed usin

asymmetric delay element. Such elements delay only one kind of transition (eithe

rising or the falling) and leave the other transition with minimal delay.

The request and acknowledge gathering is constructed the same way as in the c

circuits (shown in section 3.1.6). The delay element can be placed either before or

the request gathering C-element. If placed before the gathering C-element, the

element has to be replicated on every input into the C-element. This consumes more

and power but does allow a more closely matched delay to be constructed. This is be

the effect of each input may take a different period of time to reach the output. Placin

delay on the output of the C-element would force the delay of the stage to be the

irrespective of the order of arrival of inputs. As it is often the case that the last inpu

arrive has a short path to affect the output, the stage not completing until the wors

Figure 3.8: Bundled data half latch
Chapter 3:  Asynchronous logic 36
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delay has passed can have a negative effect on the performance. An example of

technique is demonstrated in figure 3.9.

A compromise between the two approaches places the shortest input to output de

the output of the gathering C-element. The inputs which require a longer delay

additional delay elements placed on their respective C-element inputs. This app

gives both the accurate arrival time based delay along with reduced area and p

consumption.

Figure 3.9: Common delay

Figure 3.10: Separated delays
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3.3 Dual-Rail (DIMS)

Invented by D. E. Muller, theDIMS [23] (Delay Insensitive Minterm Synthesis) syste

is an asynchronous design methodology making the least possible timing assump

Assuming only the QDI delay model the generated designs need little, if any, time clo

testing. The basis for DIMS is the use of a one-hot code on a set of wires to represen

The most common number of wires used in sets for use in DIMS logic is two, where

wire set represents one bit of information. Although other codes are possible and u

such as the 1-of-4 codes, only 1-of-2 codes will be examined here.

To enable the QDI operation of the system the request path is duplicated. Assertin

of the request wires transmits one bit of information the value of which is dependen

which request was activated. The data is acknowledged and the active request wire

be de-asserted before the acknowledge is released. As the request signal is encode

data, the dual-rail data encoding can only be applied using the early data validity

3.3.1 Latches

Dual rail latches are composed by duplicating the request path in the control circuit

designs. The new request signal names are usually suffixed with a 0 or 1 distingui

the value transmitted by each signal.

Figure 3.11: Dual rail protocol
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Half latch

The half latch design described in section 3.1.3 is taken and its request path is dupli

This duplicates the C-elements in that path giving a C-element for each bit. In the co

circuit the ‘request out’ signal also drives the ‘acknowledge in’. In the dual-rail vers

there are two requests out so they have to be merged in order to create an acknowle

In this case as only one of the request wires will be active at a time and the acknow

should be activated once a request out is generated (irrespective of which one), the s

will be gathered using an OR gate.

3.3.2 Logic

Logic in a DIMS system has to preserve the strict sequencing assumed by the la

DIMS logic performs two tasks: it gathers the request signals of all input latches

affect the result and performs the logical operation. The output of a DIMS gate mus

generate a result until all inputs are present and not release the result until all inputs

been released.

The standard construction of DIMS gates involves generating a full set of all minte

from the inputs. These minterms are generated with C-elements and cover the full

legal input states. In the example of the two input gate, there are four minterms, on

Figure 3.12: Dual-rail half latch
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each of the possible input states. Each output wire then takes a selection of these

and generates the output when any one of them is activated. Each minterm must a

exactly one output as ignoring the minterm will stop the gate from producing an ou

and attaching it to more than one output will generate illegal output states.

The construction of larger gates becomes more problematic as the number of min

increases exponentially with the number of inputs (2x) and the number of inputs to eac

minterm C-element matches the number of dual rail inputs. Figure 3.14 shows a four

DIMS gate. Here there are 16 three input C-elements and a 15 input OR gate gath

the results. This explodes the eight transistor synchronous equivalent gate into

transistor DIMS implementation.

3.3.3 Bit-level pipelining

One of the useful aspects of dual-rail logic is its intrinsic ease of creatingbit-level

pipeliningcircuits (demonstrated in systems such asPhased Logic[26]). In contrast with

the bundled data circuits, which usually use one latch controller to latch multiple bi

data, dual-rail latches capture one bit of data each. Although bit-level pipelinin

Figure 3.13: 2 input DIMS OR gate
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possible in the bundled data designs the increased complexity of having a matched

for each latch makes the system large and slow.

Four-phase dual-rail designs present their completion at a bit level (and not a stage

like common bundled data designs). This allows parts of the result to flow to the

stage in the pipeline and be operated on before the complete result has been gen

This behaviour makes designs, which use carry ripple adders frequently, faster a

bottom parts of the result which are generated first are used by adders in subse

stages. This transfer of data from one stage to another in an ordered sequence (bott

first then going up) is calledskewed wavefront pipelining. The skewed wavefront allows

stages to disguise their high latency by ordering the inputs to come at the exact time

are needed and generating the outputs in the same order. This gives ripple carry ad

latency of a single bit full adder rather than the critical path of the full carry chain [2

The practicality of skewed wavefront pipelines is reduced once the full value needs

de-skewed for operations such as memory accesses.

Figure 3.14: 4 input DIMS OR gate
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Data travelling through dual-rail bit level pipelines not only becomes skewed w

passing through adders but can also pass through stages in an unordered manner

the complexity of generating some bits be higher than others.

3.3.4 Vertical pipelining

Although the data passing through a ripple carry adder can generate some results

others, the full stage must complete before the adder can work on the next data i

This effectively de-skews the data as the bottom bits of the next set of values cannot

a adder stage while the stage is completing. This can be avoided by pipelining the

into a a series of smaller blocks separated from each other by latches. Vertical pipe

allows a small section of the adder to complete while the rest of the adder is only sta

to compute. This not only reduces the reset period by allowing the different segme

complete in parallel, but also frees the bottom segments to start computing on the ne

of data. Vertical pipelining also increases the overall pipelining of the system whic

important to stop data from stalling due to blocking (explained in “Properties

asynchronous pipelines” on page 15). As well as adders, other constructions have

made using the vertical pipelining style such as register banks [28].

3.3.5 Empty latches

Blocking is a big problem in four phase circuits as the circuit often spends as much

resetting as working on the data. This forces each stage which feeds back to itself to

half the time resetting. In the vertical pipelining example above, the insertion of lat

to break up the adder into a set of smaller segments allows parts of the stage to co

while other parts reset. The latches areempty latchesas they do not hold a token at rese

time. The insertion of empty latches is necessary for building fast four-phase circu

the stages need to be split into two or more balanced segments to create a pipelin

few data stalls.
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Chapter 4: Early output

Both synchronous and asynchronous bundled data designs do not take into accou

operated on when forming the timing of the operation. In synchronous designs the

used for each operation is fixed (in synchronous circuits all inputs arrive at the same

and in bundled data it is fixed to the arrival of the last input and is irrespective of

complexity of the task being carried out. This forces each stage to assume a wors

delay before completing. DIMS logic elements, due to their restriction that all inputs m

be present before generating an output, consume a worst case delay during

execution.

To capture the performance potential of average case performance fully, the timing

be data dependent and the generation of results must be allowed before all inpu

present [24][29][30][31][32][33][34][35][36][37].

4.1 Early Output Theory

Many functions can generate the result based on the data from only a subset of inpu

often it is impossible to determine which inputs must be supplied to a stage to yie

result. In push channel communication the data is supplied even if it is not necess

the unit it is supplied to. Speculative supply of data to a unit is often unavoidable a

necessity often cannot be easily determined. The synchronisation between the gen

of the output and the late arriving data which is not needed to complete the operatio

a negative effect on the performance of a system. Generating a function’s o

irrespective of the arrival of data on all inputs can allow faster operation but still gene

the correct result.
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4.1.1 Determining input necessity

The input set gathered to trigger the output generation can be limited to just the nece

minimum. This set can be determined by observing the presence of inputs and thei

The necessity of data inputs can be determined in one of three manners: data indepe

data dependent and data co-dependent.

Data independent

The data independent method relies only on the presence of other inputs and not the

Once an input threshold has been met the stage can complete. This method is only

in redundant computing where the result can always be generated even in the abse

at least one input. An example of such a scheme would be in having two implementa

of a functional unit, each performing the same task with the same data but using a dif

algorithm. A data independent stage would be useful to pass out the first result gen

by one of the units and thus achieve the best performance through using each u

operations better suited to it.

Data dependent

A multiplexer always requires just one of its data inputs to arrive (as well as the s

signal) to generate an output. The desired input is encoded in the select signal wh

observed to determine the necessary input set. This data dependency uses the da

always necessary set of inputs. The other inputs are gathered but their necessity

determined before their arrival.

Often, in situations like this, the data channels are implemented using pull channel

only the desired input is fetched. This optimisation allows the data communication

at the request of the destination rather than pre-emptively sent by the source. The re

of unnecessary data transfers can allow a reduction in power consumption.
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Data co-dependent

The data dependent method of determining the required input set assumes the pres

a necessary input set. In most computing stages each input can sometimes be unne

and sometimes provide data to disqualify other inputs. The inputs to a stage which

two 1 bit inputs and passes them through an OR gate are co-dependent. This mea

(depending on the data) each input can obviate the necessity for the other (in cases

the first input to arrive is a one).

4.1.2 Early output cases

The situation where a stage has received sufficient data to generate a result while

inputs are still to arrive is called anearly outputcase [38]. Early output cases allow th

output generation in a circuit to synchronise only with the necessary subset of input

not with the last input to arrive.

To demonstrate the approach, each of the three asynchronous circuit styles descr

the previous chapter (control circuits, bundled data and dual rail) will be adapte

generate early outputs.

4.2 Control Circuits

As control circuits do not pass data, the generation of early outputs must be

independent. Normally a token is passed on the output once all inputs in the latch’s

set have all presented tokens to the stage. In the early output version, only a thresh

inputs has to be present to output a token. In this function a rising transition of an i

cannot cause the output to fall, and a falling transition on the input cannot cause the o

to rise.

The threshold function gives the earliest possible time an output token can be gen

but does not guarantee that all inputs are ready to be acknowledged (or hav

acknowledge released). To ensure that all inputs are ready for a transition o

acknowledge signal each latch outputs its validity. A validity transition signals the la

is ready to accept an acknowledge transition. To ensure the acknowledge does no

any input latches before they are ready to accept it, the validity signals of all input
Chapter 4:  Early output 45
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gathered and combined with the acknowledge of the output latch. This ‘guarding lo

replaces the strong indication that existed in the standard system. With guarding

each latch is protected from receiving a transition on its acknowledge until it has sign

it is ready to do so (by transitioning the valid signal).

The early output protocol can be seen in figure 4.1. When compared to the diagra

“Early, Broad and Late Four-phase protocol” on page 23, the valid signal now doe

work of the request signal in the sequencing of the transitions. The request s

transitions in parallel with the validity, it is guaranteed to be low once the validity

released and high by the time validity is asserted.

4.2.1 Latches

The addition of the validity output in the latch design can be accomplished by conne

it directly to the request out signal. In most designs, this is the most logical metho

generating the validity and the separation of these signals on the outside of the latch

not seem justified. The separation becomes useful in designs where the latch ca

advantage of the different uses of the two signals, as demonstrated in “Anti-Token

page 63.

The second change to the standard latch designs is the sequencing of the ‘valid

signal with the acknowledge on the input. The acknowledge may only transition to m

the state of the validity in signal. This can be enforced by inserting aguarding C-element

[39]. This can be seen in figure 4.2 where the acknowledge signal, which leaves the

in the “Half latch design” on page 29, becomes synchronised with the validity in sig

(Vi) to generate a guarded acknowledge.

Figure 4.1: Early output protocol
Chapter 4:  Early output 46



4.2 Control Circuits

d the

s from

te the

only

gnals.

ree to

rate

nputs

eshold

it to

rive

fore

equest

input

input
4.2.2 Logic

The guarding C-element is the connection point between the validity gathering an

acknowledge gathering C-element trees. These two trees are used to protect latche

receiving transitions on the acknowledge signal until they are ready to do so, despi

unbunding of the request and validity signals.

The acknowledge tree has existed in previous control circuit designs and the

difference in early output systems is the separation of the validity and the request si

The validity signal now takes the place of the request signal by being gathered in a t

form a single signal at the output latch stating the validity of all inputs used to gene

the particular output. The request path now does not need to signify the state of all i

and can concentrate on the generation of the data (or in this case the time of the thr

being met). This is done in a separate threshold function allowing the control circu

fire when a subset of inputs has arrived yet still wait for the remaining inputs to ar

before acknowledging them.

4.2.3 Advanced Latch Designs

Half latches wait for the trailing edge of the request signal on the input side be

releasing the request out. This unnecessary wait can be avoided by releasing the r

out as soon as it is acknowledged by the output stage rather than also waiting for the

to be release. The latch must still keep the acknowledge high until the request on its

has finally dropped.

Figure 4.2: Early output latch
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This action introduces an additional trailing edge into a token and splits the token into

as demonstrated in figure 4.3. The figure shows a token which stretches through the

(part 1 in the figure where both the input and output requests are high). The

(represented by the rectangle), once it has received an acknowledge from the s

feeds, can drop its request output early (before the input request has been release

front part of the token gets a trailing edge attached to it and the back part of the token

a front edge which is locked to the latch and will not progress (part 2). This will allow

front token to progress with a new trailing edge, generating a smaller token w

occupies fewer stages. The back token’s trailing edge will eventually catch up to the

where the rising edge is held and disappear (part 4).

Although the latch is capable of separating two data stages using a spacer because

stages hold the same token (stretched and split into two) it does not increase the le

decoupling of the latch. The latch is still only capable of ever storing half a token.

Figure 4.4 shows the design of anearly-drop latch [39] which has the early drop

behaviour described above. The latch is based on the half latch design and keeps

element along with the inversion.

An AND gate is added in the path from the original C-element to the Ro output. Norm

the gate’s output will reflect the data from the original C-element, but when the se

input of this gate has dropped, the output is forced low. This second input is driven b

inverted Ao signal. This forces the output low as soon as the acknowledge arrives b

validity signal remains high to stop additional transitions on the acknowledge signal.

Figure 4.3: Early-drop latch token split
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once the request in the input side of the latch has been removed can the valid

released.

The early output latch exploits the sequencing between the validity and the acknow

signals to release the request but not trigger another computation cycle.

4.3 Bundled Data

An early output version of bundled data systems can be implemented in the same w

the control circuits. The generation of results can be controlled by both the arriv

tokens and their data. Inputs can be data dependent, co-dependent or data indep

giving the maximum flexibility.

4.3.1 Latches

Bundled data latches as in the control circuits are constructed by forking the reque

(Ro) wire to the valid out (Vo) output and inserting the guarding C-element.

4.3.2 Logic

The generation of an output can be dependent on the presence of an input or its data

condition signals are gathered to create a request signal.

A multiplexer example demonstrates both data dependent and co-dependent inpu

The three inputs to the multiplexer in this example come from three different source

Figure 4.4: Early-drop latch design
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and B are data inputs, of which one will be passed to the output conditional on the

of input S. One early output case is covered by the presence of input A and S (valid

high) and the data of input S being zero. Another early output case is covered b

presence of input B and S and the data of input S being one. These two cases also

the ‘all present’ case. The all present case is normally needed to generate an outpu

all inputs have arrived. In this case the early output cases cover the all present case s

is no need to add it to the request generating logic.

Figure 4.5 shows the early output generation and the validity gathering for the multip

example. Normally, in the request generation logic, there would also be delay eleme

match the delay of the logic but in this case the delay of the logic is equal to the del

the early output request generation and no additional delay is necessary.

The data part of the function must be combined with the request from the latch the

came from with an AND gate. This ensures data inputs have no effect on the function

they are stable. Attaching the data to additional gates before passing it through an

gate with its request signal causes races and extended wire forks. Such an arrange

smaller and easier to implement than forcing all data signals to pass through an AND

with their validity but additional timing assumptions must be upheld to ensure cor

operation. An example of this strategy can be seen in an early output case i

multiplexer example which is not covered by the rules stated above.

Figure 4.5: Early output function of a multiplexer
Chapter 4:  Early output 50



4.4 Dual-Rail

but a

data

relies

come

ut).

t. The

two

first is

each

hen

mes

eration

r this

quest

utput

cal

e the

-rail

these

tion

). Less

the

ibed

ignal

d into
The two early output cases stated before cover most likely combinations to arise

third early output case is possible (which will be shown). The first two cases are

dependent. This makes the S input necessary in all output conditions. The third case

only on the presence of input A and B and this causes the input combination to be

co-dependent (as each pair of inputs could remove the requirement for the last inp

When A and B are present and they are equal the S input is irrelevant to the resul

result can then be generated without the need to wait for the S input. There are

methods to construct an equality comparator for use by the request generator. The

to pass the inputs directly into a standard equality comparator (a row of XNOR gates

taking a bit of the two inputs and an AND gate collecting all the XNOR outputs) and t

AND the generated equality signal with the validities of the two data inputs. This assu

that by the time the request signal has gone up, the comparator has completed its op

and presents the result for the current set of inputs. This is rarely the case and fo

method to work a delay element would have to be placed into the delay of the re

signal. The alternative to this approach is to pass all data inputs used in the early o

function through AND gates (with the validity signal of the input) before any logi

operations are conducted on them.

4.4 Dual-Rail

Implementation of the early output method is more suited to dual rail systems wher

validity of the result is intrinsically encoded in the data. The implementation of dual

early output circuits can be achieved in a variety of delay models. The safest of

models is QDI which offers safety matching that of DIMS along with forward propaga

speed of bundled data/synchronous designs (examined in sections 4.11 and 4.12

robust methods use QnDI models which reduce the reset times, by not observing

transitions of all wires in the system, and allow higher throughput. All methods descr

use the same set of early output latches.

4.4.1 Latches

In the control circuit and bundled-data latch designs, the generation of the validity s

was done by forking the request out wire. In dual-rail circuits the request is separate
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a request 0 and a request 1. As no single signal exists, the validity signal must be gen

when one of the requests becomes active. This can be done by gathering then using

gate.

Half Latch

In a half latch, the addition of an OR gate to generate the validity signal can be avo

as this signal is already available. Originally generated to drive the ‘Acknowledge

output, the OR gate also generates the validity output. The reuse of this gate caus

overhead of the early output version of the half latch to be a single (guarding) C-elem

Early-Drop Latch

The dual rail early-drop latch has no OR gate gathering the request outputs and

early output version must add that additional component.

In the early-drop latch design, the OR gate gathering the requests before the res

AND gates is used to generate both the validity and the acknowledge signals.

Figure 4.6: Dual rail early-drop latch
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4.4.2 Logic

Early output dual rail logic has fewer restrictions than the DIMS approach. The outp

logic gates or units must remain in the null state until enough valid inputs have arriv

determine the correct output. The units do not have to generate an output in every

output case but must generate an output once all inputs have become valid. Once an

becomes valid it may not change with the arrival of additional inputs. In the reset p

the unit can drop its output once any of the inputs have been released and must d

output before, or shortly after, all the inputs have been released. Unlike the D

approach, where the output is kept active until all inputs have been released, the

output units have no such restriction. This makes the logic cheaper to construct, b

stage completion must be ensured using a separate mechanism.

The structure of a two input early output OR gate is demonstrated in figure 4.7. The

gate generates an early output when either of two inputs are 1. To complete the set o

states the AND gate generates an output when both inputs are valid but they a

covered by the early output set (both are 0).

This combination can be used to create any dual-rail early output AND/OR gate wi

without inversions on inputs and outputs. AND/OR gates output one value when all in

are in a particular state and output the other value in all other input combinations.

Figure 4.7: Two input early output OR gate
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inversions of inputs or outputs can be performed by swapping the wires representing

0.

With the arrival of the first input, the gate can either generate an output (if that input

attached to the OR gate) or wait for more inputs to arrive as the output cannot b

determined with the present valid subset of inputs. This will continue until either the

receives an input connected to the OR gate or all inputs connected to the AND gate

been activated. Once one of the inputs to the OR gate has been activated the AND

cannot gain the full set of inputs it requires to activate. In this example it is easy to se

any complete input set will generate an output as either the input set matches the

gate set (and the AND gate generates the output) or some inputs differ and instead a

one or more of the OR gate inputs.

The AND/OR gate has a full coverage of the early output states. It is not necessa

generate an output in every early output case. Construction of more complex

composed with early output dual-rail AND/OR gates yields correctly behaving logic

often does not have full early output coverage. Figure 4.8 shows a multiplexer constr

with AND/OR gates and table 4.1 shows the behaviour of the unit. The unit gene

outputs in all but one of the early output states (marked red). Due to the compositio

parts (composing early output circuits from a set of early output gates) of the unit, th

gate can only generate an early output once it has received a one as an input from

of the two dual rail AND gates. The OR gate receiving a zero from the AND gates c

mean “transmit a zero as it is being selected” or “this input is not being selected”. Th

why the A=1,B=1,S=X case results in an undetermined output.

This example demonstrates that composition by parts generates non optimal design

can be corrected by implementing from the whole specification rather than dividing

problem into parts. When designed using the full specification, the multiplexer cove

early output cases with no overhead in area over the original design. The follo

functions would be used:

X1 = (A1+S1).(B1+S0)

X0 = (A0+S1).(B0+S0)
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4.4.3 Loose Guarding

Early output circuits are designed to generate outputs before all inputs have

presented. This property prevents the system from determining the state of inpu

observing the output alone. Instead, early output circuits require a method ofguardingto

ensure all inputs are ready to accept a transition of their acknowledge signals. In aloose

guardingsystem the input latches signal their ability to receive an acknowledge trans

by raising their validity output to state they are ready for the acknowledge to transi

To ensure all inputs are ready for the transition to take place, all validity signals

gathered using C-elements and finally combined with the output latch’s acknowled

a guarding C-element. The output of the guarding C-element is aguarded acknowledge.

This acknowledge will transition only once all inputs are ready to receive it and

acknowledge from the latch (taking the result of the stage) has signalled it has acc

Figure 4.8: Composed early output multiplexer

B=X B=X B=X B=0 B=0 B=0 B=1 B=1 B=1

A=X A=0 A=1 A=X A=0 A=1 A=X A=0 A=1

S=X X X X X 0 X X X X

S=0 X 0 1 X 0 1 X 0 1

S=1 X X X 0 0 0 1 1 1

Table 4.1: Output generation of a 2:1 early output multiplexer
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the data. This enables any latch in the system to stall the following stage from ent

either the set or the reset phase (by not transitioning their validity signal). It also m

the acknowledge from the output latch safe to be transmitted before all input latche

ready to accept it as it will be stopped from progressing to the inputs by the guardin

element. This signal becomes latched in the guarding C-element which will keep it

progressing until all latches have accepted the previous transition (signalled

transitioning their validity signal).

Figure 4.9 shows the implementation of a gate with loose guarding. The Additiona

element generates a validity signal for the output of the gate wire bundle by sim

gathering the acknowledge signals of the inputs to the gate.

This form of guarding is sufficient only for simple stages due to its timing assumpt

(explained in section 4.5). Hazards can arise due to the limited scope of observabi

the state of the circuit. Only the state of inputs and the output is observed (and not in

wires) when declaring it safe to move to either the set or the reset phase.

Although early output logic has no storage, the signals travelling through it have d

Signals can propagate through many gates and once their source latch has release

the propagation of the falling edge can take a longer period of time than the sta

transition back to the set phase. These dying signals can then interact with other s

Figure 4.9: Standard early output gate with input guarding
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in the new set phase in order to reach the output. The output in such a situation co

incorrect as it is based on data from the previous cycle.

Signals abandoned by their input latch are often referred to as orphans. An example

orphan affected circuit is demonstrated in figure 4.10. The chained OR gate takes i

from a number of sources, generating one output. The arrival of the furthest input (A)

the circuit has already completed will be met with an immediate acknowledge.

causes a short pulse on the signal emerging from this latch. As the stage is resettin

pulse can slowly travel along the chain of OR gates (coloured blue) eventually reac

the output once the stage has moved back into the set phase.

This problem can be tackled in two ways. The first is to generate a set of tim

modifications and force the circuit to only complete the reset phase after a period of

during which all orphans would have been eliminated. This is not delay insensitive

reduces the robustness of the circuit but as the occurrence of dangerous o

propagating structures like the one in figure 4.10 is rare (normally large OR gate

would be balanced), the methodology could have an impact on the performance

system. This is described in section “Early output timing assumptions” on page 60

second is to use a safer form of guarding to enforce a QDI level of robustness on

system. Two forms of safe guarding will be described.

4.4.4 Forward Safe Guarding

As the validity gathering C-elements only observe the state of the input latches,

cannot ensure the internal state of the logic. This makes the circuits non QDI

susceptible to hazards. A QDI guarding system such as forward safe guarding can re

these hazards. Attaching an OR gate to the output of a dual-rail gate (as demonstra

Figure 4.10: Example orphan circuit
Chapter 4:  Early output 57



4.4 Dual-Rail

ock.

ity of

rward

ing to

te of

e

ave

in the

lso

ional

rsion

ates

ing of

ge is

e need

puts

to be
figure 4.11) generates a local valid signal based on the wire pair within the logic bl

This signal can be connected to the validity gathering C-element to ensure the valid

both inputs and the validity of the output. As these gates are connected to other fo

safe gates the validity reflects the state of all stage inputs and data wire pairs feed

the gate (even through other gates). The gathered validity will reflect both the sta

inputs and the validity of all dual-rail wire pairs in the entire logic block. Th

acknowledge cannot transition until all inputs and signal pairs in the block of logic h

become valid or returned to zero. This can ensure no orphan signals are present

logic before moving onto the next computation cycle. This type of guarding is a

implemented in the NCL-X design style [32].

The forward propagation of the computing signals remains unhindered by the addit

guarding logic and the stage delay should be similar to that of the simple guarding ve

(assuming additional capacitance of wires due to fan out to the validity testing OR g

have little impact). Although the result can propagate to the next stage, the gather

all inputs and the restriction that all paths must be activated before the acknowled

permitted to propagate can have a negative effect on the speed of the reset cycle. Th

for all wires in the design to be checked along with all inputs (as opposed to just the in

in the loose guarding system) creates a large gathering C-element which would have

constructed from a tree of smaller C-elements.

Figure 4.11: Forwards safe early output gate
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The effect of this gathering style is to force the unnecessary late inputs to arrive an

the parts of the logic they control. After this is done, the reset of the stage also chec

wires in the logic block before releasing the acknowledge. The check has to be cond

on both the rising and falling transitions of all wire pairs, as the only way to ensure

sub circuit has completed and gone through the cycle is to observe all wire pairs risin

then falling.

This approach creates a fast propagating result (low latency maintained) but a s

propagating dropping edge (reduced throughput).

4.4.5 Backwards safe guarding

Thebackwards safe guardingmodel checks the data wire pairs for the presence of d

on the propagation of the acknowledgement signal rather than the validity. This a

parts of the logic and some inputs to reset before the arrival of all inputs.

In backward guarding, validity is generated by taking an OR of the two data wires.

then only signals the local validity of that wire pair and so does not imply that it is saf

pass the acknowledge to all the inputs of the gate (as some may have not arrive

protect the inputs of the gate from receiving acknowledge signals before they

asserted their validity, a C-element is placed to propagate the acknowledge only if

inputs have become valid. This is arrangement is demonstrated in figure 4.12.

construction is similar to the “Reverse Path Completion” created by Luis Plana us

the Balsa system (unpublished).

Unlike the forward guarding system, backward guarding examines the state of the c

on the acknowledge propagation. This can make it slower than the forward gua

system as backward guarding, instead of testing the circuit for validity of internal d

rail wire pairs in parallel with it computing, waits until the circuit enters the reset ph

before doing so. The advantage of backward guarding is its ability to acknowled

subset of inputs, in early output cases, while waiting for the complete set to arrive.

property is exploited in section “Backward safe guarding” on page 64.
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Backward safe guarding also creates circuits with low latency but a reset phase

slower than that of the forward safe guarding system (lower throughput). The two

guarding approaches generate QDI circuits which are very robust but at a cost of re

throughput. Additionally, a safe guarded system cannot take advantage of the anti

latch described in the next chapter (although the backward safe guarding system can

limited use of them). For these reasons it would also be advantageous to determi

timing assumptions to avoid using a safe guarding system. In most circuit stages the

guarding system is sufficient and it would be advantageous to determine if the circu

possible hazards before adding additional guarding logic to remove them.

4.5 Early output timing assumptions

As stated in section 1.6, timing validation is outside the scope of this thesis, but the ti

assumptions made and how they have been upheld in experiments conducted i

chapters will be presented. The timing assumptions in loose guarding early o

systems are based on the removal of orphans. The safe guarding strategies achieve

observing every intermediate signal in the system to ensure all were valid (or return

zero) before allowing the next transition on data signals.

Figure 4.12: Backwards safe early output gate
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The example presented in section “Loose Guarding” on page 55 will only cause a h

if a timing constraint is broken. There is a race between the data signals progre

through the logic gates and the validity signal travelling to the output through a seri

C-elements which then switches the guarding C-element within the output latch.

enables the acknowledge to be asserted which releases the data signals of som

latches which then releases the data to the output. In figure 4.13, the two paths are

in red and blue. If the blue path takes longer than the red path, the blue signal would

the final OR gate after the red signal on the other input would have already been rele

This would be seen to the output latch as two distinct tokens. This can cause an extra

to be inserted into the pipeline which can either deadlock the system or unsynchro

pipeline causing it to function incorrectly throughout the remainder of the execution.

alternative is that the two results of the stage were merged and either matching and le

the error unseen or causing both bits in the result to be one (a disallowed state).

In the figure, the paths have visibly different lengths and it would be very difficult for

post layout routing to make the delay of the blue path longer than that of the red p

the gates were formed from cells which forced the C-elements to be placed directly

to the logic gates. This does also assume the C-element validation network doe

become optimised into a shorter path (e.g. by forming a balanced tree). All early o

circuits can be assumed to be safe if they uphold the condition that the propagation

through each gate’s validation gathering C-element is slower than the data propag

These timing constraints can be extracted and used to guide the layout software to

these conditions are met.

Figure 4.13: Orphan race
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If it is difficult to adhere to these constraints in some gates, those gates can b

implemented using one of the safe guarding methods or additional delays could be p

on the generation of the valid signal from some gates.
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Chapter 5: Anti-Tokens

Guarding logic provides a method of ensuring an input is present before acknowled

it. Until a late arriving input arrives, the stage (or at least part of the stage as will be sh

in section “Backward safe guarding” on page 64) is unable to complete

acknowledgement. This not only stops the stage progressing to the next set of inpu

also requires it to continue computing a data input already determined to be unnece

The first challenge, of releasing the stage to move to the next set of inputs, ca

accomplished by keeping a flag inside the latch representing an instructio

acknowledge the next token and to not propagate it to the next stage. This would

the stage to continue processing, safe in the knowledge that the late and unnecessar

will be destroyed and instead only the following token will be presented to the stag

The flag kept in the latch to destroy one token can be thought of as an “anti-token”. A

tokens in collisions with tokens destroy both the token and themselves. This is don

adding a not moving front edge to the arriving token. This, as demonstrated in se

“Advanced Latch Designs” on page 47, causes the token to be removed.

Although a latch could be designed to hold a number of anti-tokens, the increase in

area and propagation delay through the latch is undesirable. Instead of latches gat

anti-tokens and waiting for inputs to arrive to be destroyed, the latch should be ab

forward the anti-token to the stage computing the unnecessary input. This both solv

problem of unnecessarily computing the input and removes the need for the latch to

a number of anti-tokens.
Chapter 5:  Anti-Tokens 63



5.1 Anti-token theory

few

r and

move

and

e the

s but

reach

bers

ently

l stages

rows

ect of

s are

areful

wn in

has

rriving

the

gh

tes an

not be

ledge

ctly)

th of
5.1 Anti-token theory

In order to understand how an anti-token processing system can be built, a

implementation styles should be examined to determine the desired behaviou

possible implementations.

5.1.1 Backward safe guarding

Backward safe guarding, as described in section 4.4.5, allows a subset of inputs to

back into the set phase once all dual-rail wire pairs they effect have become valid

returned back to the null state [38] (an example of this will be shown). This is becaus

completion of the stage is not determined on the propagation of the validity signal

rather on the propagation of the acknowledge. This often allows the acknowledge to

some inputs of the stage which have become valid. The other input subset with mem

which have not become valid, is halted until all inputs are presented and subsequ

reset. This action can be repeated allowing the result of the stage to become severa

ahead of some inputs. Unfortunately, in each cycle the halted set of inputs g

eventually absorbing the whole stage. This partial completion behaviour has the eff

collecting anti-tokens to absorb the unnecessary inputs. Although the anti-token

unable to progress through the input latch onto the next stage backwards, c

designing can enable many anti-tokens to be collected in a single stage.

Anti-token generation and stacking can be demonstrated in an example circuit sho

figure 5.1 (note this is a different circuit from those shown in chapter 4). The circuit

been abstracted to show only the request and the acknowledge wires. The values a

on all inputs (latches A to F) in the example are always 1. In the initial state, shown in

figure, the circuit is provided with inputs B to F. Input A is not provided. This is enou

to generate a result and the output (latch Z) receives a request. This output genera

acknowledge despite the absence of the complete set of inputs to the stage.

Despite the acknowledge from the output latch, the late and unnecessary input can

acknowledged until its token has arrived. This stops the progress of the acknow

signal from reaching the input and any inputs which are combined (directly or indire

with the path of inactivity due to the non-presence of the input. In this case, the pa
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inactivity only reaches one gate and the only other input connected to that gate is in

(as shown in figure 5.2). The acknowledge signal can reach all other inputs in the s

The release of all other inputs in this case also drops the output and the acknow

signal is released by the output latch. This causes the acknowledged region

shortened down to the single gate which is waiting for one of its inputs to be rele

(signalling the acknowledge is being propagated), and one gate which is not releas

output signal due to it not being able to propagate the acknowledge signal (as sho

figure 5.3). Although input C becomes reset it cannot become valid again as a gate it

is propagating the acknowledge and it will not stop acknowledging until all its inp

release their requests.

Figure 5.1: Backward guarded stage with full input set

Figure 5.2: Stage after acknowledge

Figure 5.3: Stage after removal of acknowledged inputs
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All other inputs can now become valid. Again, if the set of inputs is sufficient to gene

a result this stage can complete and generate another acknowledge cycle.

acknowledge region (acknowledge high between the AND and the OR gate

effectively an anti-token. Figure 5.4 shows the maximum anti-token capacity of the s

It can store two anti-tokens while still being able to generate a result which allows

output latch to acknowledge, although the acknowledge cannot reach any inputs

effectively gives the stage a maximum anti-token capacity of two and a half.

Each anti-token waits for the presence of valid data on all its inputs before acknowled

them and does not release the acknowledge signal until all inputs have returned t

(signalling they have accepted the acknowledge). This allows the anti-tokens to sta

and not merge into a single anti-token.

The maximum anti-token capacity of a stage can be determined through the differen

the number of inversions in the late arriving token path and the input subset still cap

of generating an output assuming the circuit uses only one kind of gate (either AN

OR where the other gate can be created through applying DeMorgan’s theorem o

available gate). Each inversion can store half an anti-token. In the given circuit this w

yield a difference of 4 inversions. An additional half anti-token can be stored in the ou

latch so the total number of half anti-tokens which could be stored in the stage is 5

Unfortunately, stages are rarely able to keep more than one anti-token and more ofte

can only separate inputs from their output by half a cycle. This also does not resolv

problem of stopping the computation from being carried out by propagating the anti-t

through a latch. Additionally, the computation of the stage’s completion being done

after the stage has generated a result, yields lower performance, as will be shown

next chapter.

Figure 5.4: Stage with maximum anti-token capacity
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5.1.2 Counterflow pipeline processor

Interaction between moving tokens is usually done at specific points where they be

synchronised (should either token arrive before the other it will then wait for the o

before the action takes place). Interaction between tokens in a system wher

interaction point is not specified becomes more problematic. This is what anti-to

attempt to achieve by allowing the token to progress though the latch to the pre

stage. By specifying the point of interaction the backwards safe guarding anti-t

system can avoid the use of arbitrating components (the input latch of the stage is a

the interaction point in this case), which are necessary if a synchronisation point i

specified. Unfortunately, one of the advantages of anti-tokens is that each token tr

progress to the other thus halving the amount of time they take to reach each othe

The counterflow pipeline [41] is an example of a system where tokens moving in opp

directions interact. Composed of two pipelines, instructions flowing in one direction

the results and register contents travelling in the opposite direction (opposite direct

the instructions) interact. Interactions can destroy or change data carried by to

flowing in the opposite direction. The result tokens take the latest value of the reg

taken from the instruction token. The instruction tokens can also read or update the v

of registers they are operating on. Often there are also ways of deleting toke

situations such as taken-branch instructions; this removes the speculatively

unnecessarily, fetched instructions.

There are a number of implementations, both synchronous and asynchronou

counterflow pipelines. The “asynchronous counterflow pipeline processor” is the m

relevant. The system allows tokens to travel in both directions unhindered until the

to progress to a stage occupied by another token flowing in the opposite direction

dangerous action of both tokens moving to their next stage and bypassing one ano

protected against by acop element. The cop element takes the requests, from the

pipelines, for transition of a token to the next stage and only permits one of them.

other token’s movement is halted until the stage has signalled it has finished operati

it. This ensures that both tokens are present in a processing stage and only that s

able to process the interaction between the two tokens.
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The cop element uses a mutex element (described in section 2.3.2) to ensure only

the transactions is granted. Unfortunately, the use of arbiters can have a negative ef

the performance of very finely pipelined systems with a lot of collisions. With the he

use of arbiters with their non-deterministic delay, the design style has an unpredic

computation time leaving it unmarketable for real time and quality of service applicati

Although this design style could be adapted to carry tokens and anti-tokens in the

pipelines, the overhead in delay of the sequencing arbiters into every latch transa

could remove any benefits gained by removing unnecessary speculative opera

Additionally the technique is unnecessarily complex simply to remove colliding toke

as it is also designed to perform arbitrary computation on the collision.

As no computation is needed to remove tokens and anti-tokens upon their collision

is no necessity to ensure they meet in a single stage. Counterflow pipelines us

separate pipelines to allow tokens to pass (after interaction) and for both to carry da

both tokens are always removed and data is carried only in one direction, there is no

to have separate pipelines.

5.1.3 Counterflow networks

Counterflow networks [42] are neural network type organisations communicating u

asynchronous protocols. Neural networks comprise a mass of neurons, each “fires”

reaching a threshold of neighbours already fired. The threshold is determined by sum

weighted inputs and comparing to an output threshold and once a neuron fires it c

more of its neighbours to fire. Connections between the neurons are bi-directional.

The two elements used to compose counterflow networks are the node and the link

node is connected to other nodes using links. Links do not have a direction

communicate the state of both nodes, synchronising them to ensure each nod

acknowledged the transition of the other. Nodes collect the states of their neighbour

once having reached their threshold they fire.

Both the node and the link are symmetrical and use a three wire interface. Figur

shows the construction of both the links and nodes and demonstrates the how th

connected. The three wires labelled L, R and N are used for communication. The L
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(Link Request) signifies a link passing the request from one node to its neigh

(through the link). This request is passed to the link over the N wire (Node request).

R (Ready) is used to enable flow control between the two nodes. The link uses this

to stop the two nodes it is attached to from firing or returning to their non excited st

Each node collects the Latch request signals in the threshold unit. The output of thi

is then gathered with all Ready signals in a C-element. The C-element output beco

active represents the Node firing. This signal is then passed back to all links to forwa

other nodes. Links which connect two Nodes which have fired then release their R

signal. This also drops the Link request signals passed to both nodes. The link will

until both nodes have returned to their inactive state before re-activating the Ready

which in turn allows requests to propagate through the link.

This sequencing forces each node to wait for all its neighbours to fire before releasi

request and ensures all links are “ready” before firing. Not only does this ensure

message is propagated and not lost but it also separates waves of activation.

Figure 5.5: Circuit of two counterflow nodes connected by a link
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In a simple example a string of nodes and links is made in a FIFO like arrangement

the one shown in figure 5.5), the threshold of each node is set to one, meaning a nod

fire if either of its neighbours has. A wave of activity can be caused by either end’s to

firing. All nodes will then fire in order progressing the activity towards the other e

Each node, once it has fired (and so have its neighbours), can return to its un-excited

This is not necessarily on the trailing edge of the activated region. A new pair of tra

edges can be created by any node. This splits the excited area into two parts creating

trailing edge for the firing front and a trailing edge for the decreasing back part of

activated region. This behaviour is similar to that of the early-drop latch describe

“Advanced Latch Designs” on page 47.

Each node fires and waits for all of its neighbours to fire before dropping to its inac

state. Only then can a node fire again, once all neighbouring nodes are ready to rec

new request (signalled through the Ready lines). The enforcement of at least one

separating regions of activity ensures the trailing edge of an activated area i

accidentally connected to the rising edge of another activated region. Again this is an

behavioural trait in common with the token based asynchronous system.

The most important behavioural aspect of the couterflow network system is the me

of activation regions progressing in opposite directions. Unlike the trailing edge, the

no protection for the front edge from merging with another activation area. This m

that two areas moving in opposite directions will merge. Any areas with no leading e

will be removed by the trailing edged deactivating the remaining excited nodes.

A token collision happening in a FIFO example is demonstrated in figure 5.6. T

activation regions are generated in nodes at opposite ends of the FIFO (point 1). The

progressing in opposite directions towards each other. By point 3 on the diagram

trailing edges start releasing some nodes at the back of the regions. Because the

are flowing in opposite directions, at point 4 they merge their leading edges leaving

trailing edges on the activation area. These then release the remaining activated nod

by point 6 remove the whole region.

This merging and destruction of two regions moving in opposite directions can be us

implement anti-tokens. To remove and stop a region from progressing, another activ
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area can be introduced travelling in the opposite direction towards the undesired re

The introduction of these counterflowing areas occurs in counterflow networks wh

number of neighbours to a node have not fired at the time the node fired. The newly

node then passes its request to the remaining unexcited neighbours in an attempt to

them to fire. This removes the slowly progressing activation areas which should

reached the firing node through the node’s still inactive neighbours. This is very sim

to the desired behaviour of the anti-token circuits.

5.2 Control Circuits

Three methods of generating anti-tokens have been proposed. The backward

guarding anti-tokens are implicit in the design and need no additional effort to

implemented. Unfortunately this method does not allow tokens to progress backw

through latches. The counterflow pipeline does allow the progress of anti-tokens thr

latches but requires a large amount of additional logic. An anti-token pipeline along

‘cop’ units would be required alongside each forward pipeline, consuming both po

and area. The additional logic will probably have such a negative effect on speed it w

be difficult to find cases where anti-tokens can have a greater beneficial effect to co

the overheads.

Figure 5.6: Activation area merging in a counterflow FIFO
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The most promising approach is the counterflow network system which uses a s

pipeline to communicate in both directions. Additionally, many similarities can be dra

between it and the early output system making it easily adaptable to them. Both sy

break into two parts: the communicating components connecting two units togethe

the computational components taking inputs form one set of connections and gene

outputs on other connections. The only difference is that the control circuits ha

nominal direction of data flow. Data flow direction is partly enforced by the sequenc

of the delay insensitive protocol underlying the model. Although the sequencing of

early output style transaction requires the data to be present before the validity ris

ensure the acknowledge cycle begins only once the input has presented data

acknowledged), this condition can be removed if the latch can remember to remov

token at a later time. In such cases, the token may not need to be present in or

complete the stage’s computation. The acknowledge will reach inputs which hav

presented data to the stage if the latches which they pass through present the validity

Presenting the validity early allows the acknowledge to propagate to the late arr

token. This would only be done if the latch is both capable of propagating

acknowledge to the next stage and it is not currently doing so. Each latch reserve

ability to not raise the validity line if it is not ready to accept an early acknowledge. T

can mean the latch is not ready to receive an acknowledge at that point in time or the

is incapable of doing so (not an anti-token latch).

5.2.1 Latch

The anti-token latch can be implemented by altering the counterflow network node

link designs. Taking the node and link design and directly mapping it into the con

circuit’s latch template yields the implementation shown in figure 5.7. In order to map

design to the control circuit specification, the node firing function is mapped to the e

output function and an OR gate combines it with what would have been the link req

signal in the counterflow network design. The ready gathering C-element from

counterflow network design is mapped to the guarding C-element and the va

gathering tree.

The request in line (Ri) is combined with the acknowledge out (Ao) signal (after be

passed through an AND gate to ensure it is only active when the latch is ‘ready’) in an
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gate to allow either of these inputs going high to trigger a completion of the cycle.

means once the result has been generated or the activation of acknowledge out (A

signalled a receipt of an anti-token, the latch can complete. This triggers an acknow

on the input side. On the output, if a token was being passed, the Request wou

activated and the latch will wait for an acknowledge. On passing an anti-token

acknowledge has already been received and so the stage can fully complete by rel

the validity out (Vo) signal.

Early output re-insertion

In counterflow networks, the nodes will only complete once all links are ready. The

no special output link which can fire once the threshold has been reached and befo

inputs are ready. Because, in computing systems there is a nominal direction of data

the circuits do not have a symmetrical behaviour across the input and output nod

early output systems it is possible to take advantage of the threshold being reached

all inputs have raised their validity. The result is propagated to the next stage an

gathering of validity signals ensures that, only once all inputs are present, doe

acknowledge become asserted.

Figure 5.7: Control circuit adapted anti-token latch
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To regain the early output property, the Ro signal must also be activated when th

signal has been triggered. To achieve this the Ri signal must be able to trigge

activation of Ro. This can be done by merging the Ri and Ai signals in an OR ga

demonstrated in figure 5.8. This causes the Ro signal to become active when the Ri

arrives, and stays active until the acknowledge Ao has arrived.

5.2.2 Logic

The logic in anti-token based systems is the same as that in the early output logic

assertion of validity before the request has been generated is not within the early o

protocol. The method of circuit generation does not need to change but in order fo

system to allow anti-token latches to communicate with standard half and early

latches, additional timing assumptions must be upheld. These are described in secti

This allows the use of anti-token latches only in places where they are beneficial wh

other places half and early drop latches are appropriate. The benefits of anti-token la

become greater when used in data processing systems such as bundled data and d

Figure 5.8: Early output control circuit anti-token latch
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5.3 Bundled data

The implementation given above can be used for bundled data systems. The latch

used in place of a half latch and connected to any early output stages (as long as the

assumptions described at the end of this chapter are upheld). The latching signal c

taken from a number of points in the design to generate the correct latching for a

phase early handshake. The “acknowledge in” signal is easiest to sample as other

can often be optimised away to form complex gates.

5.4 Dual Rail

In the past two chapters, the dual rail versions of the latch could be generate

duplicating the request data path. Unfortunately, in this design, this would require

duplication of most of the gates and the addition of several OR gates to detect comp

of different wire pairs. Instead, a redesign of the request passing system allows a s

design. The new design is shown in figure 5.9.

The data is stored in asymmetric C-elements (see “C-elements” on page 25). T

release their data as soon as the acknowledge on the output arrives. This gives th

Figure 5.9: Dual-Rail anti-token latch design
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token latch an early drop property. This comes at a higher expense than the early

latch (described in section 4.2.3) but it does have a different timing response to sti

The acknowledge out rise to request out fall time is two gate delays compared wit

early drop and half latches which take just one.

5.5 Anti-Token protocol

Anti-token latches do not adhere to the early output protocol which assumes seque

of the transitions on the request and validity signals. Figure 5.10 shows the early o

protocol and figure 5.11 shows the STG of the sequencing. The transitions marked

on the figures are the Req to Val transitions. This sequencing is upheld by early o

half and early drop latches and by ‘safe guarded’ gates (both forward and backward

even upheld across loose guarding logic if the delay of the validity gathering C-elem

can be assured to be greater than the delay of the logic gates.

Because anti-token latches rely on being able to assert their validity before assertin

data request, this request validity sequencing assumption cannot be upheld. Additio

Figure 5.10: Early output protocol with safe sequencing

Figure 5.11: Early output protocol STG
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the use of loose guarding allows the request signals to become asserted and rea

during the reset phase (as just-arriving signals ripple through the stage and arrive as

on the output). Finally, the request signals need not rise within a cycle due to an anti-

pass. The sequencing in figure 5.12 shows the updated anti-token allowing based

output protocol and figure 5.13 shows its STG.

5.5.1 Timing assumptions

Stages with anti-token latches on their inputs are susceptible to generating several r

pulses on the output of the stage during the acknowledgement. Latches should only

the first request, and while the stage is acknowledging, the latches should ignor

transitions on the request wires. To stop the data C-elements in the half and early

designs from receiving additional tokens during the acknowledge, the acknowled

signal could be inverted and connected to each of the data latching C-elements. This

the C-elements from capturing new data while the previous stage is in the reset

Figure 5.12: Anti-token protocol

Figure 5.13: Anti-token protocol STG
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(while Ai is high). Anti-token latches are already protected from accepting tokens du

the reset phase.

This is a simple strategy to stop all orphan glitches from reaching the next stage. I

tested and shown to work in a circuit specifically designed to cause such a situation.

cases very rarely occur as circuits which generate such behaviour are composed o

strings of OR gates along which the orphan can travel, a specific sequencing of arriva

data would also be required. In the next chapter, a number of circuits will be prese

including one which has a long line of OR gates which is a very susceptible to failur

meet these constraints. During the testing and benchmarking of these circuits

situation of an orphan managing to propagate to the output of a stage never occ

throughout the thousands of simulations conducted on these circuits. This was

because most of the stages were very small and balanced (roughly logic equal distan

all inputs).

These timing assumptions, and methods of protecting latches against orphan

presented to demonstrate that the timing hazard problem may be solved without pa

high penalty in performance. A number of assumptions, such as the comparative de

a C-element versus a gate, were made, but as these are outside of the scope

investigation, they will not be justified. Only a simple model of orphan generation

propagation was presented and further work in the area should reveal better appro

to achieve a highly robust system still capable of working with anti-tokens.

5.5.2 OR-causality

The functionality of the anti-token latch is based on OR-causality [33][36][37]. O

causality is a method of triggering a transition once one of a number of input ev

happens, in contrast with AND-causality which requires all input events to happen b

the transition is triggered. In the case of the anti-token latch either the request in (R

acknowledge out (Ao) transitioning up causes a sequence of transitions.

This kind of behaviour is difficult to describe in DI STGs as either (or both) of the inp

can cause the output transition and each input transition should be acknowledge

example of a method of guaranteeing all inputs are acknowledged is shown in figure
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Either of the two inputs (A and B) transitioning up can cause X to transition but b

inputs are necessary to arrive before (observed through signal Y) the cycle can com

and they are acknowledged. This forces a sequencing on the inputs to the unit and b

and B have to cycle even when only one causes the transition of X. In the figure, alth

X does not cause Y to transition, the implementation of the circuit ensures tha

transition on X will happen before the transition on Y. For this reason the transitions

connected through Read Arcs (dashed lines), which signify the transition is guarante

happen before, although it does not directly cause, the other signal transition.

The design of the anti-token latch presents an additional problem where only one o

two signals (Ao) is guaranteed to be cycled each transaction. The Ri signal may

arrive. In the previous example the Y- transition was used to guarantee both signa

completed their cycle before starting a new one. In that example, both signals

guaranteed to rise and fall during each cycle with Y synchronising them. In the anti-t

latch the high periods of the two inputs entering the OR-causality segment are con

to periods between sensed transitions. In the case of the Ao signal the high per

guaranteed to be present each cycle and so can be observed by directly sensing

signal, in a similar way to the example design. In this case the Vo transitions synchr

with the Ao signal much in the same way that Y was used in the example circuit. Th

Figure 5.14: OR-causality example circuit and STG
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high period is not guaranteed to be present during each cycle and another meth

ensuring the signal does not become high some time later during the cycle mu

present. Although the Ro signal high period is not guaranteed to be present each

(and thus the circuit cannot observe it transitioning up and then down to guarantee

completed) the high period of Ro must be confined between Ai- and Vi-, as one o

rules of the anti-token protocol state that each cycle the Vo- transition must happen

any Ri transitions. Figure 5.15 presents the STG of the behaviour of the anti-token

presented in figure 5.8 on page 74. The OR-causality part of the figure is highlighte

green to match the highlighted OR-causality in figure 5.14.

In addition to dealing with the OR causality between the Ao and Ri signals, the latch

also generate the Ro signals which could be acknowledged before or after it is gene

In the STG the Ro signal is withdrawn only if it was raised during that cycle. T

decision, along with the OR-causality, could be resolved using a mutex element

mutex free implementation is preferable as a mutex element can consum

unpredictable amount of time to resolve. Although the probability of a long metatst

Figure 5.15: Anti-Token latch STG
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period within the mutex is very low, the use of a mutex in a frequently used compon

such as this, increases the probability to a level where it could become problematic
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Chapter 6: Application and Analysis

To understand fully the behaviour of circuits made with the techniques described i

previous chapters, properties of circuits affected by this change in the design style

be identified. These properties can then be analysed in circuits to become perform

metrics.

This chapter will concentrate on two areas of the early output designs. The occurren

early outputs will be studied and then methods of improving this metric will presen

The second area focused on will be the performance of complete early output cir

After analysing the performance of circuits, a series of optimisations will be presented

their effects on the performance will be demonstrated.

6.1 Early output occurrence

The ability of circuits to generate early outputs must be measured to justify the claim

increase performance. Different computations have different early output propertie

demonstrate these properties, 12 common circuits were observed with varying nu

of valid inputs present. For each circuit the full input state space was explored and for

input combination, the ability of the circuit to generate a result was recorded. As s

circuits tested have over 100 million input combinations a program was written

simulate the circuit in each case and then optimised to allow reasonable compu

times. Its operation will be explained in more detail in section 6.1.2.

6.1.1 Benchmarks

The circuits chosen were taken from a synchronous design [43]. These were not a

or optimised to allow the tests to observe the true performance of circuits create

synchronous engineers and then passed through the program the function of which w
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clarified in the next section. Each benchmark circuit will be described and its func

presented.

7seg

The 7seg benchmark is the generator for segment A (top segment) from a 7 segment

display decoder. The input is 4-bit binary coded decimal and the output is the state

top segment of that digit. High output of the segment is distributed randomly acros

input state space. As the binary number being presented to the unit is limited to the

of zero to nine, the extra input states can be ignored on the logic generation. Thi

allow the generation of smaller implicants (larger implicant loops on a Karnaugh m

and thus increase the likelihood of early outputs.

ALU

A one bit slice of an ALU from the reference design. This takes a three bit code defi

the operation on the two, 1 bit values along with a carry in. The three bit code

represents 6 operations and so there is some redundancy in the code as well as th

in only being necessary for addition and subtraction operations. The other (log

operations are AND, OR, NOR and XOR.

AND

Early output states are generated most frequently in very large AND/OR gates.

benchmark uses an eight input AND gate to show an ideal circuit where the probabil

early outputs is very high even with a very low number of inputs.

Adder

Although it is impossible to generate a full result of an addition without the presenc

all inputs, it is possible to generate parts of the result with only a subset of inputs.

benchmark measures the ability of bit eight of the adder to generate a valid result
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inputs higher than bit eight in the adder have no effect on the result of bit eight an

thus ignored.

Branch

The logic to determine if a branch should be taken in the original design took the rele

bits from a fetched instruction, the result of the comparators and the flags from the

co-processors. This totals nine inputs of which many can take considerable time

computed. The branch unit in a processor is often the bottleneck and it is important

able to determine which instruction to fetch as soon as possible and preferably wi

waiting for results of unnecessary computations to be performed.

CmpEQ

The branch unit takes two inputs from comparators to determine if a branch is requ

One of these comparators is a “compare if equal”. This takes two parameters (in this

both 8 bits long) and generates a signal representing their equality. The construct

made of a layer of XOR gates comparing each bit pair and a NOR gate gathering all

to generate a single bit result.

MUX

Multiplexers are a very common component and here an eight-to-one multiplexer is

to demonstrate early output instances in such components. One of the eight inp

chosen to be passed to the output depending on a three bit select input.

Memory

Memory mask logic controls the mask in the data memory load unit which zeros par

the loaded word. This is used in byte and half word loads as well as rotated partial

which have addresses on non-word boundaries. Unlike most of the other benchmar
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logic in this benchmark is relatively deep as many parts of the circuit are also us

generate other outputs.

Random

In order to prove that even circuits with random mapping of output states to the inpu

have early output cases, a circuit with a randomly chosen output for each

combination was created. Each eight bit input vector corresponds to an output of

zero or one. This effectively generates a 256 bit ROM containing random data. The c

is constructed as a two level AND-OR structure containing an eight input AND gate

each of the 130 (of the 256) different randomly selected input states to represent a po

output. The results of these AND gates is then passed to a 130 input OR gate. This

possible on modern design methodologies and both the AND and OR gates would

to be formed from trees. In this benchmark no effort was made to optimise the des

RandomMin

Synchronous designs often try to decrease the amount of logic used by optimisin

designs with tools such as Espresso [44][45]. Espresso takes a circuit specification

form of a table with the input states and the desired output states and generates a

minimised table again with the input and output states but also (if an optimisation

possible) with input states holding a larger number of “Don’t care” inputs and a decre

number of terms. This allows synchronous designs to reduce the size and numb

implicants and thus the number and size of gates necessary. In an early output syste

also can have a positive effect on early output generation.

The previous benchmark (“Random”) was passed through Espresso and the resulta

level AND-OR circuit was benchmarks. The number of minterms had dropped from

down to 41 with an average of six inputs to each minterm.
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Shifter

The shifter does a very similar job to a multiplexer. In this case only one of the outpu

(bit four) of the eight bit shifter is observed. As well as the three bit shift offset and th

bit original value there is a direction (left or right) and an arithmetic bit to trigger s

extension on right shifts. In the case of a right shift in arithmetic mode if the top bit of

input number was one, a one is used when the value is shifted beyond the extent

input number (rather than the normal zero).

XOR

The final benchmark is the worst case circuit that can be implemented in this design

in terms of its ability to generate early outputs. The XOR gate is the only gate w

cannot generate early outputs and is placed here as a control.

6.1.2 Composed Circuits

The circuits were passed into the ‘Early’ [46] program to be evaluated. Early test

circuit’s ability to generate a result under different input states. Each input can be in

of three states (Zero, One and Null). The entire input state space is 3C where C is the

number of inputs. This means that circuits with more than 20 inputs become very diff

to explore fully as the number of input combinations exceeds 4×109 combinations. For

this reason all benchmark circuits were limited to 17 or fewer inputs. If data on la

circuits was desired then other approaches such as Monte-Carlo or implicant an

could be used, but both have weaknesses. The Monte-Carlo method takes random

states and only measures a subset of the full space and thus gives inaccurate resu

implicant analysis method has also been researched. Instead of measuring the c

performance for the complete input set the early output coverage of each implicant c

derived and summed (subtracting the cross section of the implicant with the sum

total). This is a fast approach but in XOR based circuits the number of implicants bec

so great the approach becomes considerably slower than the full input space evalu

The approach could be improved but as all circuits had fewer than 20 inputs

exhaustive approach was sufficient.
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After the circuit’s ability to generate a result is recorded across the complete input

range, the proportion of input states for a valid result with a varying number of inp

present can be recorded and presented on a graph. Figure 6.1 shows the percen

input combinations giving a valid result on the Y-axis and the percentage of inputs pr

on the X-axis.

Each of the benchmark circuits, with the exception of the XOR, exhibits some e

output behaviour. Of the 12 benchmarks, the majority of circuits follow a very sim

pattern on the graph despite their differing function and number of inputs.

General trend

Most circuits, despite their differing numbers of inputs and depth of logic, will follow

very similar pattern. This has been observed on many other circuits not presented he

the average number of inputs present before a result is generated is generally be

75% and 85%. For the XOR circuit this is 100% and for the AND circuit it is 25%. T

adder design needs on average 78.66% of inputs to be present before generating an

Figure 6.1: Early outputs in composed circuits

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

O
ut

pu
t p

ro
ba

bi
lit

y 
(%

)

Inputs present (%)

7seg
ALU
AND

Adder
Branch

CmpEQ
MUX

Memory
Random

RandomMin
Shifter

XOR
Chapter 6:  Application and Analysis 87



6.1 Early output occurrence

se of

these

result.

the

nt but

sult

, a

does

mark

arly

ircuits

es not

the

onal

jacent

t care

sired

these

can be

an be

ction.

osed
Large OR circuits

Both the AND and the CmpEQ benchmarks give favourable results due to their u

large OR gates. The AND gate has a large OR gate to generate the zero result. Both

circuits need just one of the inputs to the gate to be activated in order to generate a

In the case of the AND benchmark this is achieved by any arriving input being low. In

CmpEQ benchmark the result could be generated by any pair of bits being prese

differing. This brings the probability of the function to not be able to generate a re

down even with very few inputs valid.

Because it is difficult to observe the function of the circuit in its usual application

complete input set was chosen to determine the behaviour of these functions. This

mean that the probability of the two numbers not being equal in the CmpEQ bench

is 0.39% while in an application this may be much higher.

The “Random” Benchmarks

Even with a random distribution of outputs to inputs it is possible to generate e

outputs. The random benchmarks have no regular structure. The best performing c

(such as the AND) have a large regular structure. The generation of early outputs do

rely on the existence of a regular structure (although it is beneficial) but rather on

existence of adjacent input states with the same output state (i.e. don’t cares).

Adjacent input states differ by one input and would be adjacent in a multi-dimensi

Karnaugh map. In the random benchmark there is a 50% chance that any two ad

inputs would have an equal output value. The differing input can be marked as a don’

in the situation where all the other inputs are present. In a situation like this the de

output has been determined and could be generated. In situations where two of

combined input pairs are adjacent and generate the same result the same strategy

used to remove yet another input from the care list in that situation. This process c

repeated to determine the full set of early outputs irrespective on the circuit constru

The Early tool can not only determine which early outputs are generated in the comp

circuit but also which would be possible using a ‘perfect’ circuit.
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6.1.3 Perfect circuits

A perfect circuit is one which captures all possible early outputs. A circuit does not h

perfect coverage if upon the arrival of an input the same output is generates irresp

of the data of the input. A perfect circuit would have generated an output without

presence of that input.

The ability of a circuit to generate an output is dependent on its construction and i

random benchmark it is possible to see the effect of a Boolean minimization tool o

simple composition strategy. The graph in figure 6.2 shows the performance of the

Random benchmarks along with the perfect circuit.

As predicted the probability for a perfect random circuit to generate an output with

missing input is around 50% (actual result is 52.34%). The probability of generati

result with an arbitrary number of inputs missing would(1/2(2X-1)) where X is the

number of missing inputs. In the case of two missing inputs that would be 12.5% w

again is close to the observed value of 13.84% in the perfect circuit.

Figure 6.2: Early outputs in the Random benchmarks compared with the perfect c
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Abilities of perfect circuits can be determined for each of the benchmarks and as b

these can be plotted on a graph (shown in figure 6.3). This shows the theoretical lim

the improvement in the early output abilities of the circuits.

A more important graph would be one which shows the difference between the comp

and the perfect circuit in each benchmark. This graph is shown in figure 6.4.

6.2 Attaining perfect circuit properties

A composed circuit’s inability to generate all early outputs can be analysed and a b

method of constructing circuits can be used to ensure a highly early output beha

Each of the benchmarks can be observed and the reason for its non optimal perfor

can be shown.

Figure 6.3: Early output cases in perfect circuits
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6.2.1 Optimum by composition circuits

Four of the benchmark circuits gave perfect early output coverages (AND, Ad

CmpEQ and XOR). The reasons for each benchmark’s ability to cover fully the comp

early output set show which constructions are unable to miss early outputs.

The XOR has the simplest explanation for its perfect performance as it has no

outputs and so none can be missed.

The fundamental components (AND and OR gates) have been designed to capture

early output cases and using any logic of depth one (composed of a single gate) wil

a full coverage. The AND benchmark is composed of a single gate and thus will ca

all early output cases. Even if the implementation would be formed from a tree

property would be preserved.

The CmpEQ benchmark uses a combination of a XOR gates and a basic gate.

In order to determine how to achieve optimum early output performance, the un-ca

early output states must be examined. To demonstrate a missed early output a s

Figure 6.4: Missed early output cases in composed circuits
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circuit will be used. A 2:1 multiplexer presents as an output one of two inputs determ

by a select input. The composition of the circuit can be shown and the reason fo

missing early output demonstrated.

6.2.2 Multiplexer missed early output example

The standard 2:1 multiplexer circuit consists of three gates in an AND-OR arrangem

It can be expressed as “(A.S)+(B.S)” and the Karnaugh map in figure 6.5 shows the co

of the input state space.

Using the Early tool it is possible to determine the early outputs missed by the comp

logic. In the multiplexer there is one early output not covered by the positive re

generating logic. The output of the early tool below shows the complete set of e

outputs and marks ones missed by the composed logic.

A    B    S    =>  Result

0    0    X    =>  0

0    X    0    =>  0

1    1    X    =>  1 Uncaught

1    X    0    =>  1

X    0    1    =>  0

X    1    1    =>  1

The Karnaugh map not only shows the result in all fully valid input combinations but

the early output states for the positive output. Early output cases covered by the po

result generating part of the logic can be seen in a Karnaugh map as any loops wit

or more states covered. In this case there are two of these early outputs each allow

Figure 6.5: 2:1 Multiplexer Karnaugh Map
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circuit to disregard one input. This is not the complete set of early output cases as the

tool reports another case not covered by the Karnaugh map or logic. The A.B case i

between two regions and is not fully covered by either. In the case where the circu

received a one on both the A and the B inputs but has yet to receive a value on S, the

has already been determined but the composed circuit will not be able to gener

Effectively the circuit is asked to make a decision between the two regions and

enough information has been provided to determine which region will be activated

result will not be generated. This is despite the fact that in either case the result wou

the same and the differentiation between the regions is unnecessary.

6.2.3 OR-AND logic

As shown in the multiplexer example, although there was a missing early ou

opportunity in the positive result generating logic, there was none in the negative r

generating logic. The A=0, B=0 case is covered even with S not present. The input c

to the example was in an AND-OR (Sum or Products) logic style where a set of implic

is generated using AND gates and these are then gathered using an OR gate to gen

result. This logic style allows fast two level logic which is easily minimised using to

such as Espresso. Many of the benchmarks tested were in the same AND-OR style

MUX, Random, RandomMin and Shifter). Although all these circuits managed to m

some early output cases, none of the missed early output cases were in the negativ

generating logic.

In the AND-OR composed circuits the positive result generating logic is made in

AND-OR style while the negative result generating logic is made in the OR-AND st

The OR-AND (Product of Sums) logic does not miss any early outputs and the reaso

this could enable us to build logic which will catch all early outputs.

OR-AND logic is composed of a row of OR gates, each of which accepts a numb

inputs, the outputs of which are all collected in an AND gate. To prove there is no wa

missing an early output in OR-AND logic, the situation of missing an early output will

shown to be impossible.
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Circuit implementations where, when a number of inputs have arrived but canno

generate an output, yet once an additional input becomes valid, the same result c

generated irrespective of the value in the arriving input denotes the circuit is missin

early output. In OR-AND logic, in order to generate a result, all OR gates must bec

activated and only then will the AND gate fire and present the output. In order to mis

early output, the logic must achieve a state where an upward transition from one o

wires (forming a single data bit) will activate the remaining (not yet activated) OR gat

and thus cause a transition on the output of the AND gate. The two wires in this situ

are the zero and one dual rail pair of one of the inputs. The function computed in a

where both wires in the dual rail pair are connected to a single OR gate ha

computational value as the result would be consistently one. Effectively a gate in

circuit used for composition would have to take the input and its complement.

behaviour of such gates can be predicted with respect to the mutually exclusive inpu

these inputs (and gates) can be optimised away.

As an example of this the function A.A.B was passed into the early tool. The output

presented below.

A    B    =>  Values

X    X    =>  0 Uncaught

The same result (with a different output value) is derived from the function A+A+B.

Again the output is presented below.

A    B    =>  Values

X    X    =>  1 Uncaught

Not only is the value along with its complement unnecessary for the computation b

other inputs to the gate are. As these circuits are computationally redundant and a

practical, their non-optimal early output performance is acceptable. With the excepti

these circuits there is no other way of missing early outputs in OR-AND logic. These

AND logic functions can have a use to ensure an input is valid before a result is gene

before generating a result for situations which require the presence of all inputs be

request can be passed on. This technique is used in gathering all address bits

passing them to the memory in section “Microprocessor datapath” on page 121.
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6.2.4 Full AND-OR Coverage

It is possible to use an OR-AND structure to implement both the positive and the neg

result generating circuits in the simple guarding system (described in section “L

Guarding” on page 55). Simple guarding, due to its use of timing assumptions durin

reset phase, does not impose a restriction forcing each intermediate signal to be en

in a delay insensitive code. Backward and forward guarding styles ensure the

completion of the computation by ensuring the transition of all intermediate values

valid state and then returning to zero. Because composing both the zero and

generating logic in the OR-AND style creates a circuit which does not have d

insensitive intermediate values, the approach cannot be used in the forward and bac

guarding styles. Instead, either the zero or the one result generating logic mu

composed in the AND-OR style. Because the complementary result generating

would be generated in the OR-AND style, if it is possible to ensure the AND-OR lo

captures all early output states, then the full function can be guaranteed to have com

early output coverage. As the OR-AND side will capture all early output states the me

need only concentrate on the AND-OR logic half.

The method of ensuring all early output cases are covered in an AND-OR is to add

regions which cover the remaining cases not covered by any existing region despi

fact they are not necessary to create a result in a fully valid input set. This is demons

in figure 6.6 where a third region is added to ensure an early output case is caught

The full implicant set which covers not just all the minterms but also all terms with do

care inputs, in logic synthesis is referred to as the “full prime implicant set”. Method

Figure 6.6: 2:1 Multiplexer Karnaugh Map for early output perfect circuit
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deriving prime implicants are part of two level logic minimisation schemes and there

a number of algorithms. To determine the full implicant set to generate an early o

perfect circuit, there are two methods presented. The first is based on one of the

minimisation, prime implicant set generation methods. The second takes advantage

input being in the form of a circuit which can be turned into a sum of products fo

without generating a full state space map.

Brute Force Approach

The brute force method is one used in the early tool to show the early output covera

a particular circuit. It is based on the Quine-McCluskey procedure [47][48] and th

inherits the disadvantages of the method. It determines the result of the given circuit

possible input combinations. As stated in “Composed Circuits” on page 86, the input

space is exponential with the number of inputs (3x where x is the number of inputs)

Although (as with the Quine-McCluskey procedure) a lot of these can be ignored

function needs to be broken down into a complete set of minterms and thus functions

high numbers of inputs can be difficult to process.

For each fully valid input combination, the circuit’s result (0 or 1) is recorded in a ta

The pass then runs through all input combinations with one or more not valid inputs

sequence, increasing number of not valid inputs (firstly all combinations with one mis

input are considered followed by all combinations with two missing inputs and so on)

each input state a single Null input (there is guaranteed to be at least one) is taken a

both possible valid states of that input (1 and 0) the result is looked up in the table. If

results are valid and equal then this output state is entered in the table. If either of the

result was Null or if the output values differed the entry is marked as Null. The choic

the invalid input on which to apply the algorithm is unimportant, as performing

operation with respect to any invalid input will give the same result. It can be proven

for a given function C and additional inputs A and B not present in C that C = C.A+C.A

= C.B+C.B, as a union of any variable and it’s complement is always equal to one (XX

= 1 so C = C.X+C.X). Thus performing the operation on either A or B gives the sa

result (C).
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Figure 6.7 shows the pass being performed on the 7seg benchmark. The first of th

tables shows the Karnaugh map of the circuit. Because Karnaugh maps can sho

output of the circuit only with a fully valid input set, several other tables are neede

show the complete input state space. The second, third and fourth tables show the d

output state of the circuit with one, two and three of the four inputs missing respecti

Each table is generated from the data of its predecessor. Each of the entries in the

table is generated from two adjacent inputs in the first table (the Karnaugh m

Although the last three tables are represented in a style to match the positioning

Karnaugh map, they do not follow the Karnaugh map rules of grouping.

As an example of the insertion of data into each table, the A.B entry in the third tab

inputs missing and marked in green) is taken. There is a choice of which of the rema

not valid inputs (C or D) to use to look up the values in the previous table. In either

(input C shown in red or input D shown in blue) the same result would be reached.

last table (three inputs missing) has no valid states as a result cannot be generate

just one input present.

The second pass considers all possible input states, this time running from the gr

number of missing inputs to the least, for insertion into the final list of implican

Implicants are only inserted if they are not a subset of an existing implicant in the list.

process is shown in figure 6.8. The first table cannot contribute any implicants bu

second table has three. It must be stressed that normal Karnaugh map rules do no

and the number of states covered by an implicant changes from table to table

Figure 6.7: Brute force complete early output set generation phase one
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implicants from the previous table are then marked on the next table (shown in green

any states not covered are added to the list.

This strategy is simple to implement and, as a by-product, determines figures for the

output abilities of the perfect circuit across the full input space. Unfortunately, eve

optimised code, this approach takes several minutes on an 18 input circuit and the

triples with the addition of each input (complexity O(3x)). This makes the re-synthesis o

large circuits infeasible. The generation of the perfect AND-OR early output cover

however, be achieved without analysing the result of every possible input combina

Analytical Approach

The analytical approach avoids the complexity explosion of the brute force met

Unlike the brute force method the analytical algorithm requires a circuit in the AND-

form as an input. The first (and most complex) step in the method is to flatten the ci

into a canonical form (AND-OR structure) composed of a set of implicants. This doe

necessarily have to be a minimal or an optimised set as different implicant sets wit

same coverage will yield the same result.

Once the desired function is represented as a set of implicants, the algorithm c

applied. As described in “OR-AND logic” on page 93, a missed early output exist

situations when there exists an input state where the arrival of an additional inpu

Figure 6.8: Brute force complete early output set generation phase two
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generate the same valid result for all possible input states. To ensure that this c

caught, the process needs to know the input for which the early output was missed a

state of the other inputs in that situation.

The algorithm to capture all remaining missed early output states is based on the fa

a missed early output exhibits itself through a situation where an input can arrive

given circuit state and upon presenting either value (1 or 0) to the function the resul

be the same. For this reason each input is tested for this occurrence. For each inp

implicant set is divided into three parts. The zero and one sets where the desired va

the input is zero or one respectively, and the don’t care set where the value of the in

not necessary for the generation of the output. The intersection of the zero and on

(common areas in the two implicant sets) is taken and merged with the original set.

gives the areas of the circuit where the input was not necessary to determine the ou

the function. This is done for each input and the whole cycle is repeated until no

implicants have been added into the set.

To demonstrate the process in more detail the algorithm will be shown applied to the

benchmark. The original set of implicants are listed below. This forms the master s

which additional implicants will be added.

A.B + B.C + B. C.D + A.C. D + A. C. D

This implicant list is then broken up into the three sets with respect to one of the in

(in this case A):

0: A. C. D

1: A.B + A.C. D

X: B.C + B. C.D

The Zero and One sets, can now be merged to find the common areas in both set

respect to A. To achieve this, the sets are ANDed together to generate a list of impli

which exist in both the One and the Zero sets. Before this is done, the zero and on
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of implicants are divided byA and A respectively to report only the common regions wi

respect to A.

(implicants with A) . (implicants with A)

( C. D) . (B + C. D)

= B. C. D + C. D.C. D

Of the two resultant implicants, only one can occur (B.C.D), while the other (C.D.C.D) is

the result of finding the intersection of mutually exclusive regions and can be rem

from the set at this stage. The set is then merged with the master set. In order to a

implicant to the function it must be ensured to be prime (not a subset of an already pr

implicant which could only exist in the don’t care set). Should any inserted implic

make any already present implicants redundant (by being their superset) these sho

removed from the master list. In this case the implicant is neither in the subset o

implicant in the don’t care set nor a superset of another implicant in the master se

thus is inserted into the original function. If it is a subset of an implicant in the don’t c

set then it would not be inserted. If it is a superset of an implicant (or a numbe

implicants) in the master list then it would replace these entries in the original func

This is demonstrated when the algorithm is applied with respect to C, where

intersection between the newly added B.C.D implicant and B.C from the original function

(with respect to C), generates an implicant (B.D) which is the superset of B.C.D. The new

implicant would replace the subset implicant in the master set.

After the method is applied with respect to all inputs and no new implicants are add

the function the process is then complete. The final generated circuit adds three add

implicants into original function (A.B.C + A.C.D + B.D). The complexity of this method

is approximately O(X2).

6.3 Early output function used in larger circuits

The sequencing of early output circuits is less uniform than DIMS style designs due t

data dependent timing in the result generation. Although this behaviour has been s

to be beneficial in a single pipeline stage, the ability for a larger circuit to take advan

of early output schemes will be demonstrated. First the early output circuit operation

be demonstrated in detail in order to explain its behaviour, then larger and more rea
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circuits will be assembled and their ability to use the methodologies described in e

chapters will be presented.

6.3.1 Early output demonstration

To demonstrate and observe the behaviour of early output systems, an example w

used to illustrate different aspects of the methodology.

Decrement circuit

The circuit chosen to demonstrate the properties of the early output systems

decrementer. The unit decrements its internal value until it reaches zero, the next va

then loaded from the input; in this case the input is an external constant. The unit c

used to count a specific number of cycles and output values dependent on the state

internal value e.g. counting the operations in a cyclic divider. In this design no output

generated in order to enable the circuit to function without being connected to an ext

test-bench circuit. The constant can be fixed to any value and different values give va

performance in different design styles. The pseudo code of the function is shown b

a = c = 255 // or another cimput constant

while (true) {

if (a ≠0) a = a - 1;

else a = c;

}

Figure 6.9 presents the register level implementation of the decrementer circuit. The

boxes show the positions of half latches.

As well as the half latches shown in the figure, there are additional latches on the

path in the decrementing unit. This breaks the decrementer into 32 small stages wit

inputs and outputs. This method was explained in section “Vertical pipelining”

page 42.
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S2A tool

A tool to take the specification netlist and convert it to any of the dual rail design st

described in the previous chapters was developed. The available bac

implementation styles are:

• Delay insensitive minterm synthesis (DIMS)

• Backward guarding early output

• Forward guarding early output

• Loose guarding early output

The system can not only generate an output netlist but can also simulate the circ

determine its relative performance.

The performance figures throughout the rest of this chapter will be in terms of the nu

of operations executed in a 100,000 gate delay interval.

Figure 6.9: Decrementer register level design
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6.3.2 Circuit operation analysis

Many factors can vary the operating speed of a circuit and as an example the value

constant in the decrementer example was varied to demonstrate its effect on the dif

design styles. Figure 6.10 shows the performance of each circuit with different value

the constant being read in.

The early output versions have similar behaviours and have the same factors aff

their performance while the DIMS version has different factors affecting its performa

In this analysis, inputs with sizes from 0 to 32 are used by presenting constants with v

of 2S-1 (i.e. 20-1=0 to 232-1=0xFFFFFFFF).

DIMS circuit

DIMS circuits have no early output states and so their performance is generally

independent of the data operated on. This can make the DIMS logic style useful fo

generation of secure systems which behave identically irrespective of the data

Figure 6.10: Cycle count variation effect on operation speed
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executed. Simply using the DIMS approach does not give a fully balanced system as

are two paths through a DIMS gate (see figure “2 input DIMS OR gate” on page 40

Imbalances are visible in figure 6.10 with the variation in the operating performance

respect to the loaded constant value. The worst case path in the circuit passes throu

full length of the borrow chain of the decrementer unit, composed of AND gates w

propagate the signal. These AND gates have two paths through the gate with dif

delays. The short path through the gate is the situation where the borrow input is hig

the current bit is low, this propagates the high borrow signal to the next bit. The long

through the gate propagates or generates the low borrow signal to the next stag

length of the high borrow propagation is equal to the number of leading low inputs (f

the least significant end) in the input number. This is normally very short and in 50%

cases it is zero. For a random number the length of the high borrow chain is one (50

the time it is 0, 25% of the time it is 1, 12.5% of the time it is 2 and so on, averaging

). In the case where the input number is zero the borrow chain will propagate all the

up though the width of the unit.

In the DIMS design, the length of the high borrow chain has a direct effect on the d

of the unit. For large numbers which do not reach zero during the simulation (211 and

above or point 11 on the graph) the length of the high borrow chain is on average on

the number zero, as the constant in the circuit, the length of the borrow path would b

bit width of the unit each time. For input sizes between 0 and 11 the average high bo

chain length is the average delay plus the frequency of the occurrence of the zero

times its additional length from the length over the average.

The graph in figure 6.10 shows the performance of the system matching the explan

above. The shortest delay through the unit occurs when then constant is zero. A

constant increases so does the delay and the performance drops. The effect is de

until no longer visible past the point when the size reaches 10.

The 32 input OR gate (a≠0 unit) comprises two layers of four input OR gates and one la

of two input OR gates. For this reason the introduction of high bits into the top eigh

top two bits causes additional delay as the longer paths are taken through these g
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The DIMS circuit performs best when there is a worst case borrow propagation and,

case of the large layered OR gate, in situations where no early output would be pos

Not only does this create slow circuits but the change in performance of these circuits

different inputs is counter intuitive to the designer.

Early Output circuits

The first property of early output circuits visible on the graph is their speed relative to

DIMS designs. The second important feature is the different effect of the size o

constant on performance. The early output plots on the graph can be broken up into

parts representing the areas where three different factors have the primary influen

performance. The first area is between s=0 and s=4.

With small numbers in the decrementer, the probability of the number being zero a

new number being loaded is relatively high. The early output circuit can take advan

of this and, even though the full decrement operation being performed on zero ta

relatively long time, the result can be dismissed and instead the constant is loaded in

register. This part of the graph looks similar to the DIMS line but it is for different reaso

If the result of the addition was required when the input was zero this would be the lo

point on the early output line.

In the area from five to 15 the performance increases in a linear manner with the s

the constant. This is due to the borrow chain in the long string of low bits above

constant rippling the borrow signal. The signal cannot be determined without the

from bits lower down. Units with a high input bit can determine the borrow out but du

the lack of these in the upper bits the delay of the long path has a direct impact o

performance.

Constants from 15 bits long and higher are unable to continue the trend of incre

performance as the path through the decrementer is no longer the slowest path throu

system. Instead a path elsewhere in the system is the obstacle in the performance

As shown, the effects on the early output designs are different from those experienc

the DIMS designs. Although the performance is greatly increased over the DIMS de
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the limit on the speed demonstrates that the circuit could perform much faster if an

slow path was removed.

6.3.3 Slowest path

Synchronous circuits have a simple global clock system where all signals

synchronised to latches at each cycle and emerge at the next upward clock edge

makes determining the slowest path in the system trivial. Asynchronous logic doe

have a system where the data must propagate from one point to another in a fixed a

of time. Instead the execution of the entire program can be considered as a pa

transitions from one point in the system to another. The start point would be the re

of the reset signal and the end point would be the signal which indicates the comp

of the task. Like the synchronous system, the shorter this path, is the faster the syste

perform. Unlike the synchronous model the asynchronous slowest path can pass th

any element or wire several times. This makes a simple time-stamping approa

determine the worst case, such as that described in [40], impractical.

As demonstrated by the performance cap on the decrementer design, in early outpu

the path of the slowest route is not always clearly visible. Additionally, as synchron

methods are not applicable, a novel method must be developed to tackle this probl

dynamic approach, blame passing simulation, to determine the slowest path w

presented and its use in optimising the example design will be demonstrated.

Blame passing simulator

The blame passing simulator allows circuits to be simulated in a test-bench environ

and the slowest path to be extracted. Although static timing analysis is not used in

approach, some aspects of it must be understood as they also form the basis

dynamic method.

The static approach runs through the input netlist marking the arrival time of signals.

process starts at the outputs of the storage elements (flip-flops) which are marked a

zero. Any gate with all its inputs marked can then mark its output as the last sign

arrive plus the delay of the gate. Once completed the net with the latest arrival tim
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marked as a point in the slowest path. The last input to arrive at the gate generatin

signal is marked as the next point in the path. The process is repeated until the inpu

flop is reached. More complicated approaches such as holding the time stamp for bo

up-going and the down-going edges or even taking account of cross-talk can give

accurate results. The major disadvantage of this approach is its inability to handle no

directional circuits due to cyclic dependencies. Secondly the approach can often

slowest path which cannot occur due to some signals being mutually exclusive.

An example of this would be a circuit with selectable pre and post increment u

attached. Only one increment unit would be activated and the other is bypa

Unfortunately the worst case path would assume both are activated. The alternat

having a single unit, which can be multiplexed into place in front or behind the funct

would introduce cyclic dependencies.

Blame passing analysis works using a similar strategy to the second phase of the

timing analysis. Starting from a transition which indicated the completion of the

program, the gate which caused this transition then looks at the input which cause

flip its output. This process is repeated until the initiation signal for the circuit is reac

(this is usually the release of the reset signal). This approach requires the simula

record the cause of each transition in the circuit throughout the simulation. Such a r

would be very large and only a small portion of it is relevant.

To allow longer simulations, the blame path for each transition is calculated during

simulation and only the relevant paths are stored. Non-critical paths are freed allo

only useful information to be stored. Each new transition during the simulation alloc

a record which is marked with the cause of the transition and a reference count. The

transition gets its reference count incremented. Should a transition be unable to cau

gates to transition their output (the reference count remains at zero after all gates it

to have been processed), the transition record is freed and its parent’s transition ref

count is decremented. Should the parent’s reference count also drop to zero the pro

repeated releasing a thread of transitions which accumulate to a non critical path. A

product of these transitions has arrived to all gates it affects early, it does not need

optimised and is of no interest. The advantage of this approach is that it looks a
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average case operation (as described in the test-bench). It cannot determine the wo

operation.

The blame passing extension to the simulator has a small impact on its speed

decrease) and gives a good view of system execution. To demonstrate the met

simulation of the decrementer circuit was conducted. The constant chosen fo

simulation was the full width of the pipeline (32 bits) as, in this setup, the circuit perfo

much slower than expected. The extracted slowest path should present the cause

poor performance. To allow easier analysis, the path can be superimposed on a di

of the design. To generate such a diagram the coordinates, on the schematic, of al

in the design can be fed to the simulator which then generates a list of vectors whic

be plotted. In this case, as the circuit was not designed using a graphical too

coordinates for the wires were manually generated. Figure 6.11 shows the path f

simulation.

The blue and red lines represent the up and down transitions of the signals respec

The width of the line shows the frequency of a transition’s occurrence in the slowest

The details in the diagram are not important and the significant part has been enlarg

addition to the diagram, the simulation data can be used to generate a table reporti

Figure 6.11: Slowest path of the decrementer example with zoomed segmen
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proportion of time spent in each unit (or set of units) in the system. In this case 77% o

slowest path transitions occurred within the decrementer unit. A closer inspection o

figure or the log file shows the presence of a long chain of transitions which take up

majority of the cycle time. The path follows the ripple carry chain along the zero req

path. When all the input bits are high, the carry out can be generated locally an

critical path does not stretch from the bottom bit but this path is not on the pos

transition but rather the negative one. Although using early output gave the advanta

being able to generate the results without waiting for the full ripple carry to reach e

bit, the reset phase still requires a full completion to be performed. This forces the hi

bit to observe the data being released by all inputs. As the carry zero output is driv

an OR gate of the carry zero input of the previous stage, the output will remain high

the carry input has been released. This dependency then stretched all the way to the

bit and causes a full ripple to be performed.

Once the cause of the delay has been determined, an appropriate optimisation

applied to correct it.

6.3.4 Circuit optimisation

Due to the non globally synchronised operation of asynchronous circuits, their beha

cannot be broken down into single clock cycle segments and analysed independ

Without applying very restrictive assumptions it becomes difficult to analyse the cir

operation using a static approach. Instead the optimisation system which will be desc

uses the information from dynamic timing analysis.

The full system breaks into three parts:

• Analysis: observes the circuit and identifies its weak points.

• Optimisation: determines changes which could be beneficial

• Re-analysis: applies a prospective optimisation and observes the c

performance
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This becomes an iterative process as each optimisation changes the behaviour

circuit which then needs to be re-evaluated before the next optimisation is applied.

Example optimisation

The example decrementer circuit’s slowest path determined in the previous subs

can be used to find the most appropriate optimisation. As described before, the main

in the slowest path is in the decrementer carry chain on the downward transition.

downward transition, passing through a latch along the request (data) wires, is indic

of a position where an ‘early drop’ latch can improve the circuit’s performance. The

table of possible optimisations and the slowest path route which indicates where ea

would be beneficial will be shown in the subsection 6.3.4. In this case early drop lat

are likely to be better suited in the place of the carry propagating half latches. Repl

any of these latches will change the behaviour of the circuit resulting in an circuit w

the slowest path no longer takes the same route. Blindly applying all the recomme

changes suggested by the slowest path, in a single step, can yield a much poorer 

It is a good idea to apply only one of the possible optimisations before re-analysin

circuit. This is a demonstration of one of the weaknesses of the approach and the r

why a fast simulator is necessary. The simulator can evaluate each of the po

optimisations to determine which have the most positive effect and then once it has

committed the cycle can begin again. In this case there are 31 possible optimisatio

the carry path alone.

To demonstrate the effect of some of the optimisations, three were plotted on the

against the decremented constant number as shown in figure 6.10. Figure 6.12 sho

performance across the different numbers being operated on across three po

optimisations along with the original circuit. The three chosen optimisations shown o

graph are: replacing the latch on the carry-out of bit-slice 2 (LGEO_SD2),

(LGEO_SD16) and 24 (LGEO_SD24) along with the original circuit (LGEO).

In the LGEO_SD16 optimisation the early-drop latch is placed (approximately) in

middle of the carry chain. This gives good balance, effectively cutting the delay ca
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by the release of the carry chain requests in half. This only happens once the consta

reached a size where the input values are high beyond the latch. With constants re

the newly placed latch, the carry chain can be interrupted and the release of the carry

can begin from half way across the decrementer. This improves performance but

small constants, the lower part of the decrementer still takes a long time to complete

upper part then will not get the carry in it requires to complete and start the release

carry. When constants with high bits in the upper part of the decrementer are use

upper part can start the next computation cycle independently, bar its bottom bit w

still needs to interact with the lower half.

The LGEO_SD_24 optimisation gives much poorer results as it requires the const

be very large before the jump in the performance and because the latch is placed to

one of the ends the delay caused by the release of the valid signal along the carry c

not cut in half. Instead the path is shortened by eight stages.

Figure 6.12: Analysis of possible optimisations
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The placement on bit slice two (in LGEO_SD_2) is also a poor choice. This not only d

not shorten the carry drop path very much but also interferes with a frequently used

of the decrementer by adding an extra delays in the critical path.

Although some of the factors contributing to the performance of the circuit under diffe

conditions have been explained above, the full range of influences is too large to exa

exhaustively in order to explain every point of inflection in the graph. It is equally diffic

to determine if an optimisation will have a positive effect on the performance. For

reason each potential optimisation must be simulated to ensure that it improve

performance before it is committed to the design. Although each of the optimisa

shown was beneficial with the benchmark parameters applied, each optimisation

negative effect in the range of the input constant length between zero and one

addition of the early drop latches causes additional delay in the positive edge

propagation which, in the case of the zero and one constants, is a primary contribu

the slowest path.

The importance of having a correct benchmark circuit can be seen in figure 6.13 w

the circuit’s carry path was optimised repeatedly with different benchmarks use

generate the slowest path and observe the post optimisation performance. The

benchmarks used decrement constants of length 0, 16 and 32. Also shown on the g

the original circuit performance to demonstrate how some optimisations can ha

detrimental effect on the circuit in situations not executed by the benchmark.

The primary optimisation used on the circuit with the zero length constant was

removal of latches from the carry path. The 32 length constant circuit mostly replace

carry latches with early-drop latches. The 16 length constant optimisations placed

decoupled latches on bits below 16 and removed latches above 16.

The removal of latches is yet another possible optimisation. It is used when the slo

path passes through a latch from request in to request out in the positive direction. T

common with small numbers where the carry propagates along the full length of the

The removal of this latch removes a gate delay in the slowest path but can result in an

slowest path being formed due to the pipeline stage being merged with another. In th
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of the decrementer, vertical pipelining to a granularity of one bit forms stages which

small enough to be merged and not reduce performance.

6.3.5 Optimisation tables

Relevant optimisation to be applied to a circuit can be derived from its slowest pat

peephole style optimisation can observe frequently taken paths and apply the

suitable optimisation. Figure 6.14 shows the most frequently used optimisations.

effect of these options will be demonstrated later in this chapter when applied to a nu

of circuits. The table is laid out to show on the top row the path which when matched

replace the affected components with the design below. The red lines represent po

transitions while the blue ones represent the negative transitions. Not shown o

diagram but equally important is the pattern which predicts if the optimisation will h

negative effect on the performance. Each optimisation and the reasoning will be pres

in section 6.4; the performance increase due to each will be evaluated.

Figure 6.13: Performance of circuits optimised using different benchmarks
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Early-drop latch

The use of early-drop latches allows the release of the data values before the d

requests have dropped. To spot a latch which could be replaced with an early

version, the pattern of request in dropping to request out dropping must occur frequ

in the slowest path.

The early drop latch does have the disadvantage of an additional gate delay in

propagation. In some situations, despite the frequent activation of the path to be ma

the use of an optimisation can have a negative effect. These can often be predicted

slowest path pattern matching. The path which can signify a position where the early

latch optimisation is likely to have negative results is the positive transitioning reques

signal caused by either a request in going high or an acknowledge being released. In

cases the slowest path is increased by one gate delay. This is only a minor increase

delay compared with the removal of the data released path and must occur much

frequently than the request out falling path to have a greater effect.

Latch removal

Often latches can have no effect on performance in situations where the latch i

necessary due to the system cycle time being larger than the combined cycle time

two stages the latch connects. Their presence does not increase the effective pipeli

the system as the two stages the latch connects can be very small and in a free r

Figure 6.14: Table for early drop, latch removal and insertion optimisations
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system the presence of these latches does not increase the number of data value

worked on at any one time. The latch can, however, contribute to the slowest path w

does add a C-element delay to the path each time it passes through the latch. The re

of latches is one of the most difficult optimisations from a performance prediction asp

This is due to the observation that, in perfectly balanced and optimised circuits

slowest path is likely to pass through many latches in this exact manner. Secondly,

is very little information from the slowest path to determine if the latch is useful in

system and whether its removal will have a dramatic negative effect on the perform

One of the hints that shows the latch is useful, is the slowest path passing throug

acknowledge signals of the latch. The removal of a latch which has the slowest

passing through the acknowledge signals will cause the path to extend to the next c

latch (from the other stage which has now been merged).

Latch insertion

The correct level of pipelining is difficult to predict by the designer and automatic sla

matching methods are common place in other tools [49][50][51][52][53]. These tools

static timing analysis to determine the need for extra latching. A simple latch inse

technique would be to take datapaths with single start and end points. These would

their number of latches compared and the path with fewer latches receives more to

both pipelines to be fully occupied rather than one pipeline’s full token occupancy to f

the second pipeline to be starved. This can be seen in figure 6.15 where the top pi

is starved of input due to the bottom pipeline being full. The slowest path in suc

example would run along the acknowledge path in the bottom pipeline from the ou

latch, then along the request signals of the upper pipeline.

Figure 6.15: Not slack matched pipeline
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This static approach may be effective in this example but, here, the dynamic optimiz

approach of the blame passing simulation analysis can reach the same results with

accurate placement of latches. One of the issues with slack matching is the position

new latches. These are usually evenly scattered throughout the shorter pipeline

dynamic approach has the ability to pinpoint the exact point where the extra lat

needed (or if it is needed at all).

The slowest path route, which signifies a beneficial latch insertion position, passes

the acknowledge-out of a latch though the latch and out though the acknowledge-i

This can be with either the acknowledge rising and releasing the data out

consequently dropping the acknowledge-in, or the acknowledge-out allowing new d

be latched. These paths often occur in series in designs which are latch bound (not e

latches are present to allow free token flow). The latch insertion does add an extra

delay in the data forward propagation and so the optimisation can gave negative res

the forward propagating request-in to request-out path (in either the positive o

negative direction) occurs often in the slowest path.

Anti-token latch

The last optimisation demonstrated in this chapter is the anti-token latch. The pa

shown in the top part of figure 6.16 along with the description of which latch desig

should be replaced with.

Figure 6.16: Anti-token latch optimisation
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Anti-token latches generate the valid-out signal early. This allows it to receive

acknowledge before transmitting any data. The advantage of doing this is the latch

not need to wait for data to be presented to it before the validity is generated and the

is completed. The path to be matched thus flows from the request-in to validity-out o

latch. The anti-token latch has many transition sequences where it performs more p

than other latches and it does rely on a larger set of timing assumptions being made.

were discussed in the previous chapter and, although it is possible to define and u

them, due to the added complexity in the placement and routing of the design,

generally favourable to avoid the use of anti-token latches where they do not add to c

performance.

The four optimisations shown have been studied and their benefits will be shown a

end of this chapter. Additionally to these there are a number of optimisations which

found but whose benefits have not yet been fully explored. These optimisations

below the architectural level and require further study to examine their effectiveness

three additional optimisations are presented in figure 6.17.

Retiming

Retiming [54] in synchronous designs allows stages of the pipeline to become bala

and increase performance by moving gates from a deep stage to a shorter neighb

stage. Imbalance in stage sizes is also a problem in asynchronous designs. The s

path can be used to spot stages which, if shortened, would yield higher performan

an asynchronous system, where the performance is bound by the speed of a stage

Figure 6.17: Table for retiminag and tree reshaping
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is slower than any other, the slowest path will run up and down the stage propag

along the request/validity signals and back along the acknowledge path. Becau

neighbouring stages are faster, the data is always ready to be accepted by output

and new data is always ready to be consumed at the input latches. In such a syst

slowest path is positioned along the acknowledge network until it reaches the input

and because the acknowledge is always the later to arrive, (rather than the data in) th

then continues along the request/validity wires. Once it reaches the output latch, be

the data is always ready to be accepted, the slowest path then returns alon

acknowledge network.

The first two optimisations in figure 6.17 spot situations where the stage could

shortened by pushing gates through latches in the cases where the slowest path e

behaviour common with that of large stages. This optimisation does have

disadvantage of changing the circuit so, when observed in simulation, it no longer dir

reflects the original layout of latches placed by the designer. Secondly the pipeline

borders are often placed by engineers at the points in the datapath where the num

signals to be latched is lowest. An automatic retiming algorithm can increase the nu

of latches needed by placing them in inappropriate places.

Tree reshaping

The validity and acknowledge networks in early output designs are formed from l

trees of C-elements. These are not balanced as some networks need to adhere to

conditions and leaving them in their directly translated state makes it easier to up

these timing assumptions. Some trees (such as acknowledge networks) do not have

assumptions placed upon them which prevent the trees from being balanced.

balancing is a well researched topic in software engineering where keeping all pa

nodes roughly equal length allows the tree to have a shorter average length th

unbalanced tree. This is a reasonable strategy if the likelihood of requesting each

was roughly equal or this probability was unknown. Better systems, such as the Huf

encoding trees [55][56], allow the more frequently used nodes to be placed closer

root of the tree.
Chapter 6:  Application and Analysis 118



6.4 Large design demonstration and analysis

nents.

other

This

not

n this

own

hmark

these

the

with

ta and

nted.

of the

rent

h the

n use

ation

for
In early-output circuits the slowest path frequently passes through a tree of compo

The tree could be restructured to allow this path to become shorter at the penalty of

inputs having a longer path (as demonstrated in the third optimisation in figure 6.17).

is often not a problem as these inputs will probably arrive far ahead of time. If this is

so, and the restructuring moved an input to become a part of the slowest path, the

input becomes a priority and also gets moved closer to the root of the tree.

6.4 Large design demonstration and analysis

The abilities of the optimisations and design methodologies presented will be sh

across a number of designs and test-benches. The performance of three benc

circuits will be examined across different execution parameters for each. Each of

benchmarks will then be optimised with different sets of optimisation rules to allow

benefit of each to be demonstrated. The early output designs will then be compared

the designs made in alternative design methodologies: synchronous, bundled da

DIMS.

Firstly each of the circuits and their benchmarked modes of operation will be prese

6.4.1 Benchmark designs

Three designs of varying complexity were chosen to demonstrate the performance

early output logic, anti-tokens and optimisation scheme which makes use of diffe

latch designs. Each benchmark also has two modes of operation upon whic

optimisations will be based.

Decrementer

The decrementer circuit was presented earlier in this chapter. Two modes of operatio

the input constant values of 0 and 0xFFFFFFFF. The two different modes of oper

place very different demands on the circuit and will generate circuits unsuitable

execution in the opposing mode of operation.
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Greatest common divisor

The GCD example design has two registers (A and B) which contain values of the

numbers for which the greatest common divisor is to be calculated. With each iterati

the functional unit, the registers get updated with the values of their remainders after

divided by each other. This is done using two divide units which throw away the resu

the division and feed out only the remainder. The values of the registers are also tes

see when either reaches zero in which case a new set of values would be loaded in

registers rather than reading in the next set of remainders. The following is the ps

code of the circuit.

a = ca = 223; //for the Fibonacci or 0 for the Zero benchmarks

b = cb = 144; //for the Fibonacci or 0 for the Zero benchmarks

while (true) {

if (a == 0 || b == 0){

a = ca;

b = cb;

}

else {

a = a % b;

b = b % a;

}

}

Values ‘ca’ and ‘cb’ are the new values to be loaded and computed, these are depe

on the benchmark. The first benchmark uses 0 as one of the values which will inst

throw the number pair away and fetch the numbers from constants again. This benc

doesn’t make use of the dividers and its ability to decouple itself from them will

observed. The second benchmark will use the dividers in nearly all operations and a

generation will be a rare occurrence. The numbers which give the largest numb

iterations before a number is generated are the consecutive number pairs fro

Fibonacci sequence. The numbers used will be 233 and 144 which are the two gr

Fibonacci numbers which still fit in an unsigned 8 bit number space.
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Microprocessor datapath

The final example is that of a microprocessor pipeline. The pipeline was extracted

an open source five stage RISC microprocessor design [43]. The pipeline control s

are connected to random value generators to allow the pipeline to execute ra

instructions without the need to simulate the instruction decode logic. The first sta

the pipeline (Instruction Fetch) is completely skipped. The four simulated stages (Re

Fetch, EXEcute, MEMory and Write Back) are also trimmed to simplify the simulati

The register bank contains only four registers and the values from accesses to

memory are always the address supplied.

The delay of the data memory can be varied. The delay starts once all bits of the ad

are present. The two benchmarks observe the operation with the delay set to zero

gate delays.

6.4.2 Optimisation results

Each of the test circuits was optimised for its benchmark inputs using three leve

optimisation along with the non optimised design (labelled “Early None”). The f

optimisation balances the stages through the addition and removal of half latches (la

“Early Half”). The second optimisation replaces some half latches with early drop lat

(labelled “Early Drop”). The third optimisation also where beneficial adds anti-to

latches (labelled “Early Anti”).

To compare the designs to the DIMS alternative each circuit is also implemented i

DIMS design style. Results are shown for the original unoptimised DIMS design (labe

“DIMS None”) and a design which has gone through the same optimisation sy

(labelled “DIMS Half”). Due to the early output specific nature of the early-drop and a

token latches more advanced optimisations were not possible on the DIMS design

Finally the critical path can be extracted from the input designs and the logical dep

the slowest stage can be derived. This is then used to present the maximum spee

synchronous design. The delay is that of the gates only and does not include the de
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the latching elements nor any overheads to allow a margin of error due to

manufacture or environmental conditions (voltage temperature).

Decrementer

The decrementer circuit was placed in a test bench and allowed to operate for 10

gate delays. The numbers of operations executed were recorded and are shown in

6.18.

The two value clusters show the operation speed with the circuit counting down from

different numbers. The “Zero” benchmark counts down from zero and so fetches a

number each time it executes a cycle. The “Full” benchmark decrements a maximu

bit integer. This does not reach zero within the benchmark and so a new number is

fetched.

As was shown in section 6.3.2, the zero benchmark is favourable to the DIMS de

Because the slowest path, in the benchmark of the DIMS design, travels through

along the fast path (rather than also going through the OR gate, as described in s

6.3.2) the performance benefit of the basic early output design over the DIMS counte

Figure 6.18: Decrementer benchmark performance
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is relatively small. The effect of balancing the stages and inserting/removing latch

order to streamline the design benefited both the DIMS and the early output design

increased their performance by approximately 50% but this still leaves the early o

design only 16% faster. The early output design also had the advantage of being a

apply further optimisations. Here the early drop latch insertion yielded no improvem

in performance but the insertion of anti-token latches allowed a further perform

increase to over 4000 operations. This translates to a cycle time of less than 25 gate

for a synchronous critical path composed of a 32 bit carry ripple incrementer followe

a multiplexer.

The “Full” test bench allows the decrementer unit to execute with a shorter carry path

DIMS circuit is penalised due to its use of the slower path through its gates.

performance remains poor even after half-latch insertion/removal optimisations.

early output circuit starts faster than the optimised DIMS version and benefits greatly

to the insertion of early-drop latches. The reason for this is explained in section 6.3.4

to the circuit never reaching zero in the testbench, there are no situations where a re

thrown away and the anti-token latch based optimisation does not increase

performance much. Despite the lack of anti-token causing situations, the latch is

beneficial to the circuit in places where the stage is awaiting data from one of the in

Once the input arrives the data is consumed and propagates to the next stage fast

the stage validity is calculated. Placing an anti-token latch in such a situation allow

stage to pre-compute the validity before the data arrives. The anti-token latch optimis

(fig. 6.16) detects both cases. This is because ability of the stage fully to complete

generate an acknowledge without the presence of the last remaining input is not req

in the optimisation pattern match (also it is very difficult to detect such a situation).

fully optimised circuit executes at a 20 gate delay cycle time compared with 73 gate d

cycle time of the original DIMS design or 35 date delay critical path of the synchron

version.

Greatest common divisor

The GCD benchmark uses a deep pipeline stage which is very finely pipelined with

latches. This makes the tokens going through the stage spaced out and it rarely sta
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to contention for hardware. Additionally, the early output properties of the circuit are v

good. The results of the tests are presented in figure 6.19.

The DIMS circuits performed poorly in both benchmarks due to their inability to ta

advantage of any early output cases. The half latch based optimisation in the D

designs gave a small performance boost and the benefit only came from the remo

many already present latches which added an unused level of pipelining and in

increased the latency of the data propagation.

The early output circuits performed much better due to their ability to exploit early ou

cases and not suffering from hardware contention (which can often bring the perform

down close to the DIMS level). Because of the fine pipelining of the stage, the half l

optimisation (just like in the DIMS design) removed many latches which were imped

performance. Because of the separation of tokens during execution, the early drop

had no placement where it would be beneficial to performance. The anti-token latch

an impact on the performance of the “zero” benchmark where the next set of numb

be computed would always be picked from the constants rather than the results

dividers. The same effect could not be gained in the Fibbonachi test as, even after

value had been loaded, there is no benefit in removing the current values from the pip

Figure 6.19: GCD testbench results
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as they are so spread out they will not impede the progress of the next wav

computation passing through the divider.

Microprocessor datapath

The microprocessor datapath benchmark was tested with two delays for the me

operations. The first has the delay set to zero while the second testbench uses a d

50 gate delays for a memory access. Because control signalling is generated rand

the frequency of different situations in the benchmark does not reflect their occurren

real applications. The probability of a load operation is 50% and the probability

subtract with both operands being zero (creating a maximum carry propagation cha

25%. Because of these factors, the early output circuits executed a little slower t

version executing real code. Despite this, the early output circuits are faster tha

DIMS approach and arguably also faster than the synchronous equivalent. Figure

shows the results of these benchmarks.

The DIMS circuits in both cases trimmed the level of vertical pipelining across the a

in the ALU. This has differing effects on the two benchmarks. In the version with

memory delay this approach gives a reasonable performance increase. In the fift

Figure 6.20: Microprocessor data-path testbench results
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delay version, the slowest path moved from the ALU to the memory stage and decre

the latency of the ALU did not affect the performance. Instead, this version concent

on balancing the latches around the memory stage to increase performance. The

only a little room for performance increases.

The early output circuits generally performed better than the DIMS versions. The rem

of half latches from the ALU (just like in the DIMS version) had a small impact on

performance in situations where the full carry propagation path is in the slowest path

early-drop latches did not find any situations where they were beneficial and nor di

anti-token latches in the zero delay memory version. In the long memory delay ve

the anti-tokens proved very valuable as they managed to bring the performance to

to that of the zero delay version. This was done by placing the anti-token latches a

the output of the memory stage to throw away data which was not needed. This allow

system not to take the penalty of the 50 gate delay on half of the operations exec

Additionally anti-token latches placed in the forwarding multiplexers allowed

memory operation data to be discarded at the multiplexers before it arrived, thus allo

them to not to synchronise with the slow memory operation. This has the ability of hi

the performance hit of a single memory access. The de-synchronisation of the inp

this multiplexer has a capacity of half an anti-token and thus will only be able to hi

single memory access and only if the data from the memory stage is not required b

execute stage in this cycle. Because of this, performance is still impacted (even if on

a small amount). Placing multiple anti-token latches in series will increase the anti-t

capacity, but due to the additional latency of the stage and the rare occurrence of m

memory operations with their data requested by the forwarding multiplexers,

approach only added latency to the system rather than improving its performance.

As a comparison with the synchronous solution, the critical path of the design was 71

delays (full ripple carry plus the forwarding and ALU unit select multiplexers). This d

not include the delay of the flip-flops and the timing margin overhead. This equate

1408 operations in the 100,000 gate delay simulation.
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6.4.3 Power and Area

So far the main thrust of the early output methodology has been performance b

Although in the early output approach power and area are not targets they mu

considered in the design process.

The power consumption of any given circuit can be predicted to a reasonably

accuracy in a static manner. This is because in early output circuits the p

consumption is data independent. The area and power consumption of a circuit c

broken down into the four parts. These are data latches, gates, additional pipe

latches and wire forks. In the synchronous design only the first two of these exist

consume power).

The data latches in early output designs contain ten gates of which seven transition

for each data element they pass. Gates contain three components (AND and OR

along with the validity C-element) of which two transition twice for every cyc

Additional pipelining latches (in this case half latches) consist of three elements of w

two transitions twice per cycle. Finally wire forks require an acknowledge gathering

element, this transitions two times per cycle.

The size in transistors of the various components in all three technologies (synchro

DIMS and early output) is shown in table 6.1. These are very simple estimates to

general figures and do not take account of inversions between components etc. Th

increase is dependent on the numbers of each component in the design. In the cas

microprocessor pipeline the early output design was 5.9 times larger and the DIMS d

was 7.4 times larger. The greatest common denominator benchmark was 6.2 times

in both the DIMS and the early output versions.

Table 6.1: Transistor count for each component

Element Synchronous DIMS Early Output

Flip-Flop 14 72 82

2 input gate 4 46 18

3 input gate 6 108 24

4 input gate 8 262 30
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The power consumption in the three design methodologies are shown in table 6.2

figures show the number of transitions per cycle of operation in different compon

Counting transitions is not a very accurate method of estimating power consumptio

is presented here as a rough figure of the relative values. Again this is highly depe

on the numbers of each component in the system. The benchmarked circuits had

numbers of transitions recorded and the transitions per operation was derived.

benchmarks the DIMS circuits had 13±1 times the number of transitions as th

synchronous circuit (assuming the probability of changing data being half and

considering the clock). The early output designs generated 18±1 times the number of

transitions.

Both these figures are very high due to the heavy use of half-latches which wer

removed if they did not impede performance of the design. If these half latches we

removed, early output circuits would be 4 times larger for all benchmarks and w

consume 11 to 12 times the amount of energy compared to a synchronous design.

circuits would be 5 to 6 times larger and consume 9 times the amount of power.

Obviously these figures are very poor but whether they can be justified is an issue w

will be tackled in the concluding chapter. The figures for systems without any half latc

were presented but these systems would run very slowly. Without any half latche

microprocessor pipeline executed just 400 operations in the 100,000 gate delay simu

2 way fork 0 10 10

half latch 0 24 34

Table 6.2: Transition count for each component per cycle

Element Synchronous DIMS Early Output

Flip-Flop 1/2 (exc. clock) 12 14

2 input gate 1/2 31/2 4

3 input gate 1/2 43/4 4

4 input gate 1/2 6 4

2 way fork 0 2 2

half latch 0 4 6

Table 6.1: Transistor count for each component
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(compared with 2135 for a fully optimised version). The easiest method of tackling

excessive area and power consumption is to remove all unnecessary latches. The s

path optimisation system cannot determine the usefulness of a latch and only conce

on the performance of the system. A separate system analysis method would have

constructed to trim unnecessary latches to move closer to the non half latch pipe

version.

6.5 Summary

The presence of early outputs in standard logic was presented along with metho

improving circuits to capture more of them. Even without specifically targeting

capture of all early outputs the circuits using the method were shown to be superior

DIMS counterparts. The addition of optimisations such as the early-drop and the

token latches, allow the performance of the system to surpass the worst-case

synchronous approach. The placement of these latches as well as balancing p

stages and slack matching was done using the analysis of the slowest path. This ha

shown to improve the performance of both early output and (to a smaller extent) D

circuits. The area and power concerns have been presented along with add

optimisation techniques which were not explored. These form the basis of future w
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Chapter 7: Conclusion

With ever decreasing geometries of the microelectronics manufacturing processe

new attributes of the emerging technologies are making conventional de

methodologies increasingly difficult to apply. Timing closure is becoming increasin

difficult and will soon start to consume the majority of the design time. Global clo

distribution and long distance communication are still manageable but techniqu

implement them are adding additional complication to already complex desi

Transistor variation is making the above points more difficult and also the worst

delay longer. The actual delay of the executed operation is becoming a small part

clock cycle, while taking the maximum possible period of time to compensate for c

skew/jitter affecting a worst case delay of the stage with slowest transistors o

operation which is not even being executed.

These reasons have prompted the work presented in this thesis. The presented ap

has minimal impact on the architectural and transistor level methodologies. This allo

to be used in conjunction with the current and future optimisations in these regions

7.1 Contributions to knowledge

The thesis outlined five contributions to knowledge.

7.1.1 Early output

The early output logic approach was presented. A novel method of synthesizing

output circuits was introduced and the ability for early result generation in diffe

circuits was evaluated. The reason for the inability of some constructions to captu

early output states was presented and two approaches to overcome this throu

collection of all prime implicants were provided.
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7.1.2 Safe guarding

Due to the early output’s timing assumptions, two QDI logic design styles and t

impact on performance were presented. The safe guarding methods have the advan

performing close to the speed of non guarded early output circuits but they are

robust. The slower of the two approaches (backward safe guarding) does also o

limited capacity for non propagating anti-tokens.

7.1.3 Anti-tokens

As well as the anti-token behaviour of backward safe guarding logic, a full anti-to

scheme was presented. Behaviour of anti-tokens which comprises: their gener

propagation and destruction (through a merger with a token) was demonstrated.

token latch designs were given for the control, bundled data and the dual-rail d

styles.

7.1.4 Blame passing timing analysis

As the complexity of the behaviour of designs built in a bit-level pipelined system w

data-dependent delays is too high for engineers to be able to determine the perfor

bottleneck, a new timing analysis system for use in asynchronous systems was pres

This “blame passing simulation” system extracts the slowest path from a benchm

circuit, is technology independent and can be used in all asynchronous design style

slowest path is the asynchronous circuit’s equivalent of the critical path. Critical

optimisation has been instrumental to the generation of high performance synchro

circuits and the slowest path optimisation should prove itself to be equally useful.

7.1.5 Slowest path based optimisation

A series of keyhole optimisations based on the route of the slowest path were pres

These were also demonstrated and their effect on the performance of a series of d

was shown. An automatic method of generating possible optimisations derived from

slowest path, applying them and committing the most effective, was outlined.
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7.2 Future work

The work conducted has opened many doors for future exploration of the subjec

industrial exploitation. The following are some of the proposed projects to be condu

in the future (some of which are already active).

7.2.1 Complete tool suite

During the course of the thesis a set of tools was constructed to improve the understa

of the behaviour of the circuits. These range from ‘Early’; a system for evaluating

improving the early output coverage in single stage logic, through ‘S2A’; a system

converting synchronous circuit descriptions to a range asynchronous styles

simulating them (optionally extracting the slowest path), to a set of scripts to analys

slowest path to extract possible optimisation, annotate schematics and evaluate p

optimisations.

A complete tool suite would take the aspects of the current implementations and com

them all into a single easy to use tool. A single input specification can be used to tar

number of design styles, in a similar way to Balsa [57] and Tangram [58]. Currently

input specification comes from a custom netlist format file and this would have to

extended to embrace additional popular HDL languages and preferably a cu

language specifically designed to allow designers to exploit fully the additio

methodology features. The optimisation stage could be automatic or user directed

schematic annotation with the data from the slowest path extraction could be extend

textual input specifications.

7.2.2 Timing assumption extraction

The extraction of timing assumptions is an area which has not been fully covered in

thesis and its lack restricts the possible optimisations in the non QDI approa

presented. The optimisations in question are the C-element tree flattening

reorganisation (in the acknowledge and validity gathering). Extracting the tim

assumptions would allow further performance increases and would generate a

robust system.
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7.2.3 Slowest path extraction in other systems

Although the slowest path extraction is bound to the asynchronous domain (runnin

blame passing simulator on a synchronous circuit reveals the clock as the reason

slow operation) it can be used on other design styles. Handshake circuits (used in sy

such as Balsa and Tangram) are very different from the pipeline based structures u

early output circuits, but the slowest path extraction would be equally effective

improving their performance. The keyhole optimisation table would have to be rewr

for the particular design style.

7.3 Summary

This thesis has presented a design approach takes advantage of asynchronous

construct fast circuits. On each of the six testbenches presented the fully optimised

output circuit with anti-tokens managed to outperform the synchronous equivalent a

level simulations. Future work should further extend the performance advantage

approach does come at a high cost of power consumption and area but with the re

effort of timing closure along with a range of benefits of using asynchronous logic c

justify its use.
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