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Abstract

With the ever increasing complexity of asynchronous
systems the performance cost of synchronisation during
the transfer of data becomes greater. This paper describes
methods of reducing synchronisations in four phase bun-
dled data systems. The generation of early outputs when
sufficient data has arrived to ensure a correct result is
used to desynchronise the output of a stage from the late
arriving and unnecessary inputs. Using early output logic
as a basis, further extensions can be implemented.

Anti-tokens allow not only the removal of a synchroni-
sation between inputs to a stage but also actively progress
backwards through the pipeline to remove the unwanted
data. This method halts speculative operations when the
result is found to be not needed in an attempt to lower
power consumption.

1. Introduction

As both the speed of operation and the number of
devices on a system-on chip rise there is increasing
difficulty in maintaining a synchronous model of system
operation. One solution is a totally asynchronous design
approach.

As an example, consider a microprocessor. A very
simple system is unpipelined and is a simple finite state
machine. A higher performance system will exploit
pipelining to increase throughput. A simple pipelining will
be linear and analogous to a FIFO; a relatively simple
system to implement asynchronously.

As complexity increases the ‘pipeline’ becomes more
complex. If register forwarding paths are added to alleviate
dependency problems, the architecture becomes more like
a network than a pipeline. This added complexity means
that a ‘stage’ tends to have an increasing number of
neighbours with which it must synchronise to
communicate. In this environment any particular
communication may be infrequent, but unpredictable. In
the absence of a synchronising clock messages may be sent
in case they will be needed.

This paper describes ‘early output logic’ – a variation of
weak conditioned logic [4] – applied to a bundled-data
system where a method of reducing the speculative traffic
by allowing unwanted inputs to be ‘cancelled’ before they
have sent data. This avoids unnecessary synchronisations
between units where the data communication is not needed.

1.1. Asynchronous circuits

Unlike synchronous implementations, asynchrono
systems need to pass timing information with the dat
These are handshakes to inform the receiver that data
ready and the transmitter that data is accepted. T
computation stages can take an arbitrary, possibly d
dependent, time between communications. This allows t
system to take advantage of improved performance
simple computations and move towards ‘average ca
performance.

Data packets flowing through a system can be thought
as tokens which reside briefly in a unit before being pass
to on. The passing of a token synchronises the tw
communicating units momentarily.

The handshake – ‘data is ready’ (request) and ‘ready
another piece of data’ (acknowledge) – protocol can
constructed in many ways.

All circuits described in this paper use the early ‘fou
phase’ ‘bundled data’ protocol. To pass a token the requ
is asserted by the producer once the data on the bus
stable; this is acknowledged by the consumer asserting
acknowledge line. At this point the producer can change t
data on the bus and deassert the request. Both the prod
and consumer must wait for the signal from the other
signify it may generate another transition. This ensures th
both the consumer must hear the producer and vice-ver
This also allows either of the connected units to pause t
transaction arbitrarily at any time.

1.2. Asynchronous latches

The Muller C-element [5] is one of the basic building
blocks of asynchronous circuits. It may have two or mo
inputs and one output. When all inputs are in the same st
the C-element switches state to the same state as the inp

Figure 1: Four phase protocol
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It will then keep this state until all inputs have switched to
the other state.

Typical asynchronous latches use C-elements to enforce
synchronisation. There are many such designs [6]. Figure 2
shows an example latch design. The operation of this
asynchronous latch is very simple. The request out (Ro)
signal is asserted when the request signal from the previous
stage (Ri) becomes asserted while acknowledge out (Ao)
signal is not and remains so until the request in is released
and the next stage has acknowledged the request. Here the
latching of the data is done using a ‘clocked’ latch to
simplify the illustration. This ‘clock’ signal is taken from
the Ro line but it is possible to take the signal from the Ri
line. A delay is placed on the output of the Ro line to ensure
the data has been updated to the new values before the
request signal is emitted. The sequencing of the request to
be after the data is called the bundling constraint.

1.3. Asynchronous logic

As asynchronous circuits have no clock to provide a
reference delay they have to rely of matched delays to
ensure the result of an operation is ready before it is latched.
As shown in figure 3 the request from the input latches has
to pass through a matched delay to allow time for the data
to pass through logic and be ready to be latched by the time
the request signal reaches the output latch. The delay may
be asymmetric as it is only necessary to delay the request
transition on the rising edge.

1.4. Complex constructions

Figure 3 deals with pipelines with only one input an
one output. In order to allow the construction of circuit
other than simple FIFOs the system must allow stages w
multiple input and output pipelines. Figure 4 shows th
datapath of an example circuit with three inputs and tw
outputs. It is a multiplexer taking two inputs (A and B) an
a control input (S) and passes the multiplexer result
output X, while forwarding data S to output Z.Each of th
inputs has a set of outputs into which their data feeds a
each output has a set of inputs it relies on to generate
result to pass to the next stage.

Figure 5 shows a simple method of generating th
completion and acknowledge signals for a pipeline sta
described in figure 4. The stage has completed when all
inputs have arrived and their request signals have fired
request gathering C-element, the output of which pass
through the matched delay to the output latches. T
acknowledge signals are also gathered using a C-elem
and passed to all input latches.

1.5. Separating complex constructions

Although the method described above is sufficient
produce the correct behaviour, there are unnecess
restrictions on the generation of the request an
acknowledge signals. Output Z does not rely on inputs A
B but still has to wait for these inputs before its reque
signal is generated. Also inputs A and B wait for output
to accept its data before they receive an acknowledge e
though Z is not in their output sets. By separating th
request and acknowledge generation for each input a
output it is possible to allow the system more freedom a
concurrency. The generation of individual request signa
also allows better matching delays (e.g. the delay from S

Figure 2: Example four phase latch

Figure 3: Asynchronous pipeline
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Figure 4: Multiple input and output stage

Figure 5: Naive circuit control
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Z may even be removed as no computation is conducted on
the data before being moved to the next stage).

When pipelines fork and join some synchronisation
must be imposed. Figure 6 shows a simple way of achieving
this; the upper C-element ensures that all three inputs
necessary to derive X have arrived, with the corresponding
acknowledgement broadcast to these sources. The other C-
element provides the converse function for the two
destinations supplied by input S.

2. Counterflow systems

Conventional logic systems have a unidirectional
computational flow. Methods to allow bidirectional
communication along a single channel with the tokens
flowing in opposite directions has some useful properties.

2.1. Counterflow network

The counterflow network [8] is a system which allows
bidirectional communication of control signals. These
signals upon collision combine and them remove
themselves.

Tokens flowing through the system have a direction of
travel and can stretch over several stages. This means the
token’s leading edge can move several stages ahead of the
trailing edge.

The tokens when flowing in the same direction will
queue and not combine but when flowing in opposite
directions the leading edges of the tokens will collide and
combine the two tokens together. The trailing edges then
remove the token from all stages until they too collide. This
has effectively combined and destroyed the two tokens.

The two building blocks of counterflow networks are
nodes and links. Nodes are meeting places for several (at
least two) pipelines. Links are used connect two nodes
together.

2.2. Counterflow network circuit

The construction of counterflow networks is very
simple. Figure 7 shows the circuit used to generate a
counterflow network composed of two nodes connected by
a link. The most important thing to notice about the circuit
is that it is symmetrical. This means that there is no
distinction between tokens flowing in either direction.

Nodes and links communicate using three signals: N
(Node request), L (Link request) and R (Ready). A node
will ‘fire’ once all its link neighbours are ready and the
firing condition has been met. The firing condition is
generated by applying a logic function (cloud in figure 7)

on the latch request signals. The function decides whi
neighbouring nodes must have fired in order for this no
to fire. In order to make a single direction FIFO the firin
condition is an identity of one of the inputs. A bidirectiona
pipeline can be created by using an OR gate as the fir
condition function.

A link simply forwards the request of one node to it
neighbour but once both the neighbours have fired th
request is dropped and the link becomes ‘not ready’ un
both nodes have released their requests.

During a token collision both the node and the lin
elements are unaware the collision took place. The lin
simply forwards the ‘node request’ signals from each sid
to the other node and when both of its neighbours a
requesting it drops its ready signal waiting for both t
release their request. The node during a collision will ‘fire
when any (one or more) of the links pass it a request. T
effect of this is that the two leading edges of the token w
combine the two tokens. Both the lathes and the nod
which have fired will wait for the trailing ends of the token
to arrive and release them. This has effectively combin
and destroyed the two tokens.

3. Early output

Early output logic is an extension to the standard fo
phase bundled data system described in section
Separating the completion circuits, shown in section 1.
allows some outputs to be generated before others. Out
latches only have to wait for the inputs in their input se
rather than all inputs.

In practice it is often possible to determine an outp
state before all the inputs have arrived. Methods such
‘weak condition’ logic [4] try to generate data as early a
possible as this is beneficial to the system performance

In the datapath shown in figure 4 the separation of the
and Z output bundles is not the only optimisation possibl
Although creation of output Z is impossible before input
arrives, the generation of the result X maybe possib
before all inputs have arrived.

This can be achieved by generating the request sig
once sufficient data to carry out the operation has arriv
and a matched delay has passed. The completion signal
be generated by observing the arrival of the input reque
along with their data. In the case of the multiplexer th
result is ready when either the select line of the multiplex
is ‘0’ and inputs A and S have arrived or the select line
‘1’ and inputs B and S have arrived.

There is one more case in this example where the out
can be generated with an incomplete input set. When inp
A and B are equal the select signal and input S is irreleva

Figure 6: Standard request and acknowledge
generation
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Figure 7: Counterflow network circuit
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to the result to the operation. To detect this early completion
state a comparator is needed and as the circuit data width
may be large this can be expensive. It is not necessary to
detect all the early output states. In cases such as this the
detection of this case is not beneficial as: the area cost
maybe too high, the probability of the case happening is too
low and the timing of the design ensures that the
unnecessary input is never very late. To get the optimal
performance the design should only detect early output
cases where doing so is beneficial to the performance of the
design.

A circuit for early output request generation for the
multiplexer stage example is shown in figure 8. As shown
this circuit is ‘broken’, but serves to illustrate how the
request to X could be derived. Generating the result before
all inputs have arrived breaks the sequencing in the four
phase protocol; the last input stage could receive an
acknowledge before it generated a request. If the outgoing
request is early it is therefore important to ensure all the
inputs are always collected before completing the cycle.

3.1. Guarding

To protect the input latches from receiving acknowledge
signals before being ready to accept them, guarding C-
elements are introduced (figure 9). These ensure that inputs
will only receive an acknowledgement once they are ready.
A guarding C-element takes the acknowledge signal from
the output latch and combines it with the request signals of
all inputs. Only after all input have arrived can the
acknowledge signal pass through the guarding C-element.

The C-elements will not release or assert the
acknowledge signal until all inputs have released or
asserted their request. This ensures that all inputs have
accepted the acknowledge transition before continuing to

the next transition. This was done by the old reque
generation C-element did but is no longer present in t
new version.

3.2. Validity

The input request is now used for two purposes: th
request signal generation logic and the guarding log
These have different requirements (e.g. the request pas
to the guarding logic does not need to pass through
bundling delay).

Creating a separate signal specifically to drive th
guarding logic permits improvements in designs (such
the semi-decoupled latches introduced below) as well
boosting the performance of the system slightly. Th
performance increase is due to the late arriving tokens n
needing to meet latch delay constraints before signalli
the guarding C-elements and allowing a
acknowledgement. The new signal, separated from requ
is called ‘Validity out’ (Vo).

In standard latches the Vo signal is generated the sa
way as the Ro signal except it does not need to pass thro
the latch modelling delay. Its function is to indicate that th
latch is ready to receive an acknowledge.

Another signal is taken into the latch but is not necessa
in most latch designs. The Vi signal is generated by th
guarding C-element in the previous stage and can be u
to tell the latch if the previous stage has completed. This
not necessary in most latch designs as it is possible
observe this by monitoring the Ri signal instead, but
becomes essential when constructing latches which ne
not receive an Ri signal before acknowledging such as t
anti-token latch described in section 4.

3.3. Semi-decoupled latches

A semi-decoupled latch [6] controller releases its outp
request as soon as it is acknowledged; this allows the out
latches of a stage to reset even before all inputs have b
released. If this is not done the request can still propag
but will ‘stretch’ across several pipeline stages.

By separating the request functions into request a
validity the construction of a semi-decoupled latc
controller becomes simpler. The designer can now ma
use of the relationship of the inputs and outputs of th
design, or more specifically the fact that the Vo (Validit
out) line passes through guarding C-elements, to return
Ao (Acknowledge out). This ensures that an acknowled
signal does not arrive until the latch is ready to accept it a
has announced this by raising the Vo line. Ai and Vi have
similar relationship which can be exploited (demonstrate
in section 4).

Figure 8: Early output request generation

Figure 9: Guarding logic
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Normally semi-decoupled latches require two C-
elements but, because we have unbundled the request from
the validity lines, there are C-elements outside the latch
which can be exploited. Figure 11 shows a design of a semi-
decoupled latch making use of the external C-elements and
requiring only one internal C-element. The only alteration
to the design from the original design in figure 2 is the
addition of the AND gate to remove the request signal as
soon as the acknowledge signal arrives. The arrival of the
acknowledge does not necessarily release the Vo signal and
this will stay active until the request input to the latch has
been released. This prevents the following stage from
starting to compute but does release the request signals to
allow stages further down the pipeline to do so.

4. Anti-tokens

Semi-decoupled latches allow early output tokens to
flow ahead freely. This removes one of the synchronisation
constraints in an asynchronous network. However tokens
are still generated and propagated unnecessarily; for
example the unwanted input to the multiplexer in figure 4

The remaining step is for a redundant logic input to
signal that it is no longer required. This involves
propagating informationbackwardsalong the pipeline.
Such signals are designated anti-tokens.

The counterflow network, described in section 2.1, has
many properties similar to the early output system. The
nodes and pipeline stages are similar in the respect that they
collect the ready/valid signal from all inputs using a C-
element and generate a fire/request signal by performing
some logical function on the request lines of the inputs. The
links and latches connect pipeline stages/nodes and
propagate the request signals between stages.

By implementing a cross between counterflow circuits
and early output logic the resultant system will allow the
creation of anti-tokens.

Anti-tokens [9] are like tokens but flow in the opposite
direction to the general computation flow. When an anti-
token collides with a forward moving token they combine
and destroy each other. An anti-token can be dispatched to
eliminate a late, approaching input, allowing the stage to
move on to its next computation.

By flowing backwards through the pipeline the anti-
token moves towards the data source and can do so faster
than the normal forward propagation of tokens because
there is no need for computation.

4.1. Anti-token latch design

The counterflow network circuit can be recreated in th
early output system. The design in figure 12 is visibl
similar to that in figure 7.

The counterflow network design has been adapted a
used to generate an anti-token latch design. The Ri sig
becomes active when sufficient inputs have arrived to
stage. This signal is combined with what would have be
the link request in the counterflow network design. Th
allows the output latch to cause the stage to reset. T
output latch does not need any inputs to be present to ca
a reset of the stage so an OR gate is used to allow a st
reset either the output latch or a sufficient set of inp
latches.

The latch design described above is not optimal and do
not fit well with the early output logic system. The latch
outputs two signals which need to be attached to t
guarding C-element in the input stage. It would b
advantageous to implement a latch design which has
same input and output set as the other latch desig
Additionally this design does not have an early-outp
property. The latch will only pass the request forward
when the input stage has both received the necessary se
inputs and all inputs have presented their validity. In ord
to generate early output behaviour the Ri line must caus
rise in Ro and Ai.

Figure 13 shows a optimised design which instead
waiting for the input stage to complete the request out
generated once the request in has arrived and before
inputs to the previous stage have become valid.

4.2. Anti-token operation

The anti-token latches are able to accept anti-tokens
asserting their validity before they have any data. B

Figure 11: Early output semi-decoupled
latch design
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Figure 12: Adapted anti-token latch design

Figure 13: Correct anti-token latch design
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asserting their validity early they enable the generation of
the acknowledge signal. There are two reasons why a latch
may receive an early acknowledge, the stage may have
generated a result without needing to rely on the presence
of the data supplied by the latch or the output latch of the
stage are propagating an anti-token. This acknowledge
signal is then propagated backwards through the latch to the
stage feeding it. In this stage the acknowledge signal (Ao)
overrides the request in (Ri) and causes an acknowledge in
(Ai). If all latches inputting to this stage have raised their
valid signals they (either due to the fact that they have data
or they are anti-token latches and raise the validity early)
the stage will complete and an acknowledgement signal is
sent to all inputs. Inputs which have tokens will receive an
acknowledge and remove their tokens while the anti-token
latches which receive an acknowledgement before data will
propagate it backwards.

In figure 14 is the example circuit presented earlier. The
stage was unable to complete as only one of the inputs had
arrived and this was enough data to generate only one of the
outputs. The second output has received an anti-token and
can now propagate this to the inputs of the stage. If the input
latches were not anti-token latches then they would be
protected against receiving an early acknowledge and the
stage would not be able to complete. If they are anti-token
latches then they will allow the stage to complete and
receive an early acknowledge. The anti-token is thus
propagated and removes the tokens presented to the stage.
Latches which have not presented tokens will accept and
propagate an anti-token. This example shows how an anti-
token can both be split into many anti-tokens but if the stage
had already received all inputs then the anti-token would be
removed along with all inputs.

5. Conclusions

The generation of early results is a definite advantage to
circuit performance with a small overhead cost. This also
facilitates the employment of specialist latches which allow
more flexibility in system design, boosting performance
further. The ability to use a mix of latch designs safely
allows the use of the latches that best suit the application.

As pipeline networks become more common, there are
an increasing number of external C-elements needed to
coordinate responses from different paths. Early output
latches can exploit these and thus reduce their internal
complexity hence reducing area and power cost.

The removal of input dependencies further
desynchronises the system thus may reduce harmonic
electromagnetic emissions.

The effects on circuits specifically built to take
advantage of anti-tokens would be even greater. Due to the
average case performance not being a factor in synchronous
designs the average case performance of generic circuits is
poor. Designing circuits where the worst case performance
is poor but the average case performance is good can be

advantageous. Speculatively starting long operation
rather than waiting for the result in order to throw it away
reduces system stalls. This allows the generation of resu
as soon as possible yet does not take the penalty of
increased average stage timing.

The anti-token system is an effective method of reducin
the cost of speculative operations by safely terminatin
them during their execution. This method having bee
demonstrated on simple circuits such as small multiplexe
becomes more effective on larger and more compl
designs. For example, the probability that the require
value to the multiplexer will be the last to arrive reduces a
the number of inputs increases.

The anti-token systems as presented appear to offe
benefit in asynchronous pipelines. It is possible that lar
systems can be built on this principle, expanding the sco
of asynchronous circuits further.
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