
cades.
about
clock

t. One
of this

aller.

nctional
ng or
m one
timing.

. Each
nerates

‘early
ne and
rate a
e the
slows

of the
can be

tead of
cancel
llision
token’.
tes the
. This
yed.
easing
peration

onous
D/OR
ith its
Early output logic and Anti-Tokens

Charlie Brej (cb@cs.man.ac.uk)

Introduction
The synchronous design model has proved extremely successful for designing logic for many de
One of the main advantages of global synchronisation is that the designer is freed from worries
inter-unit communication; it can be assumed that any units in a device can communicate on any
edge. Unfortunately synchronisation across a system, even a single chip, is increasingly difficul
reason for this is the very high clock speeds employed in high performance designs. The effect
starts to become problematic as the reachability of silicon area within one clock cycle becomes sm

Asynchronous logic
To address this some designers have looked at asynchronous communications, both between fu
units and within blocks themselves. Such techniques allow elasticity in the system, alleviati
eliminating timing closure problems. In asynchronous designs, instead of all data progressing fro
stage to another on the strike of the clock, the data progresses independently, managing their own
The data packets flowing through the system can be thought of as tokens.
Units have a number of input and output channels where they communicate tokens with other units
unit waits until it has accepted all tokens on all its input channels, processes the data, and ge
tokens on its outputs.

Early output logic
In many situations some of the inputs are redundant to the generation of the correct output. These
output’ cases are common in both low level circuits, such as OR gates where one of the inputs is o
high level circuits, such as multiplexers where only one of the data inputs is necessary to gene
result. In a multiplexer the necessity of a particular input is reliant on other input data (in this cas
select input). The forced wait for all inputs to arrive before a result is generated is unnecessary and
down the operation of the system.
Generating the result once sufficient data to complete the operation has arrived removes some
unnecessary synchronisations and allows a more ‘free’ operation. However, although the result
generated early, the unit has to wait for the late input to arrive in order to acknowledge it.

Anti-tokens
The late, unnecessary inputs stall the unit which can reduce the system performance. The unit ins
waiting for the late input can send a signal back up the pipeline towards the late token in order to
it and then continue. This signal travels in the opposite direction to normal tokens and when a co
happens between a it and token both are eliminated. Because of its behaviour it is called an ‘anti-
Anti-tokens can progress backwards through the pipeline and when entering a unit which genera
late token, will remove all inputs present and generate anti-tokens on further input channels
removes all tokens which would have combined to create the late token which was to be destro
The action of removing the result closer to its origin both increases the system performance by rel
stages to operate on the next input set and reduces power consumption by stopping speculative o
from being conducted.

Composition
Early output circuits can be constructed using a method called direct translation. Taking a synchr
design as an input, the method decomposes the input circuit down to a set of non inverting AN
gates, inverters and clocked flip-flops. The direct translation then replaces each element w
asynchronous counterpart.
Charlie Brej D6/MAPLD 2004



nsition
argets

one of
of its
ll data

al will
nal.

latches
latch”
ut once
. Then
hich

to be
y as the
.

oken
edge it

left is
t circuit

e, valid
Dual-Rail
The dual-rail protocol is used to communicate and process data. Using two wires an upwards tra
on either wire indicates different data (either one or zero). An acknowledge wire indicates the t
acceptance of the token. After each transaction the wires ‘return to zero’.

Gates
Asynchronous equivalent gates are constructed using two logic gates, the output of each driving
the data wires. Each dual-rail gate also distributes the acknowledge of its output back to both
inputs. In situations where the data signal forks the acknowledge signal must be gathered from a
destinations before being propagated back to its driver.

Inversions
In dual rail designs data inversions come for free. The wires are simply crossed so a zero sign
signify a one and vice-versa. Both buffers and inversions have no effect on the acknowledge sig

Latches
Flip-Flop equivalents can be constructed using asynchronous latches. A variety of asynchronous
are available with varying performance in different scenarios. The standard design called the “half
is constructed using two C-elements to capture the data and an OR gate to acknowledge the inp
the data is latched. C-elements retain the state of their output until all inputs are in the same state
the C-element will switch to reflect the state of the inputs. Asymmetric C-elements have inputs w
only effect either the rising or the falling transitions.

Validity
Early output circuits also use a separate signal called ‘Valid’ to ensure all inputs are ready
acknowledged before the signal is propagated. The validities are gathered in much the same wa
acknowledge signals and combined with the acknowledge before propagating back to the inputs

Anti-Tokens
Implementation of anti-tokens involves using anti-token latches to replace flip-flops. The anti-t
latch will assert its validity before presenting data to the stage. This enables the stage to acknowl
once the result has been generated.

Example circuit
The circuits shown below demonstrate the direct translation technique. The input circuit no the
decomposed and then each element is replaced with an asynchronous equivalent. The resultan
uses bundles of four wires to replace each wire in the original design. Request zero, request on
and acknowledge wire bundles are used to pass data between units.

Example direct translation input circuit and generated asynchronous version
Charlie Brej D6/MAPLD 2004


	Early output logic and Anti-Tokens
	Introduction
	Asynchronous logic
	Early output logic
	Anti-tokens
	Composition


