
Counterflow Networks

Charlie Brej

Dept. of Computer Science,
The University of Manchester,

Oxford Road, Manchester, M13 9PL, UK.

cb@cs.man.ac.uk
e
ch
ach
is
the
oth

ne
r

ts.

k.
ree
to
the
ks

s
h
(R)
Abstract

This paper introduces a concept of counterflow
networks. These networks do not have nominal inputs or
outputs but rather links along which data tokens can flow
on both directions. Nodes, which are connected together
with links, are able to execute computational operations
on the incoming tokens. As all links are bidirectional,
nodes treat all links as both inputs and outputs.This can be
used to acknowledge parts of the circuit early or to supply
information backwards.

1. Introduction

Asynchronous delay insensitive (DI) logic allows the
construction of circuits without making any assumptions on
the delay of any gate or wire. Timing information, instead
of using a clock, is carried using handshaking signals.
Request-Acknowledge signal pairs are used in most
asynchronous logic circuits. Sequencing these signals
allows asynchronous computation without a need for a
global clock.

2. Links and Nodes

Counter-flow[1] networks are constructed with a
combination of nodes and links. Links are bidirectional
channels[2] along which tokens can move from one node to
another. A link can accept a request from either side and
transfer it to the other. Nodes are collection points where
two or more links meet. A node can fire when all links it is
attached to are “ready” and it has met its firing conditions.
The firing conditions are based on the requests from the
links. An ‘OR node’ will fire when any of the inputs fire.
Effectively tokens are created on all inputs where tokens are
not present.

Figure 1 shows an example structure where links are
used with ‘OR nodes’ to create a pipeline. When a token
enters the pipeline it will travel in one direction. In the

example two tokens travelling in opposite directions hav
entered the pipeline. When they meet they will cancel ea
other out. This is because a node will create a token on e
input which does not hold a token. The original token
removed and a new token is placed on the other side of
node. When a node has tokens on both sides then b
tokens are removed.

A node can have a condition upon which it will fire. In
the previous example the OR condition simply required o
of the inputs to hold a token for the node to fire. Othe
conditions are possible involving some or all of the inpu

Figure 2 shows the schematics of two nodes and a lin
The communication between them happens across th
wires. The R (Ready) signal states if the link is ready
receive a token. The L (Latch request signal) states that
latch wishes to pass a token. N (Node request) informs lin
that a node has fired.

A link is made from an inverting C-element which fires
when both nodes it links to have fired (N from both node
is high). This drops the ready signal (R) and the latc
request (L). Once both nodes have reset the ready signal

OR OR OROR OR

Figure 1: Counterflow pipeline example

R

N

L

R

N

L

Node Link Node

Figure 2: Node-link-node schematic



ta
B.
ns
C
e

e-

to
ot
the

y
y it

S
h

ve

o-

r-
raises again. Once one of the nodes fires (one of the N
signals rises) the latch request signal (L) rises again trying
to cause the other node to fire.

Nodes are constructed using one C-element accepting
the ready signals from all links and the firing condition
signal. The node will only fire once all links are ready. The
firing condition (cloud) takes as inputs the requests from all
links it is connected to.

2.1. Unidirectional link optimization

Although links allow tokens to flow in both directions
the nodes can be made to fire independent of the requests
from some inputs. A FIFO is an example of this.

Figure 3 shows the possible optimisations when nodes
do not require some link request inputs. The link only
passes requests towards the right node and so the other L
signal does not need to be generated.

3. Data passing networks

Until now only control (0 bit) circuits have been
demonstrated. Although complex networks can be created
using this method, the circuits need to be able to pass data
to allow actual computation.

Figure 4 shows a dual-rail counterflow network. The
data passing wires and components are duplicated to allow
the passing of dual-rail data. The link element detects the
completion of both sides by passing the node request lines
through a NOR gate before entering the C-element.

This construction allows data to flow in both directions.
Computation can be done in the firing condition logic
(cloud in fig. 4). Nodes can fire with a value. The links will
accept values and pass them to the next node. Once both
nodes have fired they are reset and primed for the next data
inputs.

Dual-rail is just one of many encodings available. Other
encodings are possible by simply changing the completion
detection gate (in dual rail this is a NOR gate).

Figure 5 shows an example data passing network
constructed from counterflow elements. Although in
counterflow networks there are no strict inputs or outputs,

the example usually receives data on channel ‘I’. This da
is duplicated in the OR node and passed to A and
Circuits A and B process the data and generate interactio
with other circuits. Both A and B generate data passed to
through the OR node. Both A and B generate the sam
result but use different methods to create it (e.g. rippl
carry v’s fast-carry adders). In a situation where A
completes before B the result will be passed backwards
B. B can either use it as an acknowledgement and will n
spend time generating a result to pass to C, or it can use
result to derive the values of the late inputs.

4. Conclusion

Counterflow networks look interesting and allow man
strange computing structures to be created. Unfortunatel
is not clear what function they can be used for.

The computation speed is comparable to that of DIM
circuits but the main advantage is creating circuits whic
have been in the past impossible without expensi
arbitration.

5. Refrences

[1] R.F. Sproull, I.E. Sutherland and C.E. Molnar, "Counterflow
Pipe-line Processor Architecture", Sun Microsystems Lab
ratories Technical Report, April 1994.

[2] C.F. Brej, “An automatic synchronous to asynchronous ci
cuit convertor”, 11th UK Asynchronous Forum, 2001.

R

N

R

N

L

Node Link Node

Figure 3: FIFO example

R

N

L

R

N

L

Node Link Node

Figure 4: Data passing link and nodes

A

B

OR CORI

Figure 5: Example network


	Counterflow Networks
	Charlie Brej
	Dept. of Computer Science,
	The University of Manchester,
	Oxford Road, Manchester, M13 9PL, UK.
	cb@cs.man.ac.uk


	Abstract
	1.� Introduction
	2.� Links and Nodes
	Figure 1: Counterflow pipeline example
	Figure 2: Node-link-node schematic
	2.1.� Unidirectional link optimization
	Figure 3: FIFO example


	3.� Data passing networks
	Figure 4: Data passing link and nodes
	Figure 5: Example network

	4.� Conclusion
	5.� Refrences
	[1] R.F. Sproull, I.E. Sutherland and C.E. Molnar, "Counterflow Pipe-line Processor Architecture"...
	[2] C.F. Brej, “An automatic synchronous to asynchronous circuit convertor”, 11th UK Asynchronous...



