
High Performance Asynchronous Circuit Design Method and
Application

Charlie Brej
School of Computer Science, The University of Manchester,

Oxford Road, Manchester, M13 9PL, UK.
cbrej@cs.man.ac.uk

Abstract
Asynchronous circuits have a number of performance
advantages over their synchronous equivalents, yet these
advantages are rarely realised due to an overhead in the
asynchronous design method. This paper investigates the
nature of this overhead and proposes a new approach to
overcome its effect. The method is then demonstrated on
a processor design. The process demonstrates the ability
of the method to implement: register locking, instruction
reordering, super-scaling, hyper-threading, cache-banking
and other complex techniques, easily and often without any
effort from the designer.

1 Asynchronous Circuit Performance
Progress in single threaded performance of modern

processors is becoming stagnant due to the design complexity
of very large scale systems, the design challenges presented
by globally distributed clock nets and increasing variation
in component delays. Asynchronous circuits have the
potential of achieving substantially higher performance targets
than synchronous equivalents. Most advantages have been
demonstrated and exploited [1][2][3][4], yet these fail to yield
the expected performance boost.

1.1 Advantages
The advantages of asynchronous circuits can be broken

down into two groups, those brought in by using local
delays rather than a global clock and those achieved by
using implicit timing when computing (shown in figure 1).
The clock overheads consists of unbalanced stages and clock
skew. Although unbalanced stages can cause a degradation
in performance in synchronous systems by running at the
speed of the slowest stage, the bundled data approach does not
automatically solve this problem as the bundled data design
will still have the critical cycle time equal to the slowest
executed stage. So design effort is still required to lessen
this effect and it will never be fully removed by selectively
executing/bypassing stages. Matched delay overhead is a much
greater component of the clock overheads. These generally
cannot be overcome by using bundled data approaches,
(although data dependant delays can alleviate some of the
worst-average delay effect). The basis of these overheads is
the worst-case delay assumptions made by estimating the delay
of a computational stage. The worst case delay is calculated

Figure 1: Clock Overheards

by taking the slowest operation within a stage, assuming the
worst case voltage and temperature and the most pessimistic
distribution of poor transistors and wires.

1.2 Disadvantages
Judging by the overheads of synchronous systems, it should

be easy to implement asynchronous designs with 130% higher
performance. Yet rarely do asynchronous implementations
come close to the speeds of synchronous designs. There
are a number of minor effects which contribute to this (area
overhead, overly conservative delays, no speed binning...),
yet these do not account for the performance decrease
removing all advantage gained by the shift to the asynchronous
methodology in the first place.

The one major overhead is the inability of data to progress
to a stage which is going through the reset phases due to the
prevous value passing through it [5]. Many designers seriously
under-estimate the granularity of pipelining required to allow
tokens to flow freely without colliding with the reset phase
of the previous operation. The length of the reset phase is
dependant on the protocol and arrangement of the stage.

In the four-phase protocol, the computation happens in
parallel with the request assert phase (as shown in figure 2. The
protocol then goes though three more phases: acknowledge
assert, request release and acknowledge release. In early
output designs [5], the output is generated even before the
request collection has completed.

Figure 2: Four Phase Handshake

Not all the phases are of equal length, for example, bundled
data circuits have large data bundles which require little
synchronisation and well constructed asymmetric delays mean
the request release phase is much shorter than the computation



phase. In early output designs the throughput delay is more
than six times greater than latency delay (depending on the
logic arrangement and data). This ratio can be much greater
in stages where the average case computation is much shorter
than the acknowledge and request propagation delay (which
are always worst case). One example of this is a carry ripple
adder where the result is often generated with little or no carry
propagation, yet the request/acknowledge collection/release
travel the full length of the carry path. In such cases it is
common to see stage cycle times 20 times greater than the
latency delay.

2 Wagging Logic

Early output circuits are designed to propagate the result
as soon as possible to the next stage where it can be worked
on while the current stage completes and resets ready for the
next computation cycle. In a scheme where the number of data
tokens is equal to the number of stages, the tokens will spend
only a small fraction of time being computed, the remainder of
time they wait for the next stage to complete its reset phases.
There have been a number of approaches to decrease the time
spent waiting, the most common of which is increasing the
level of pipelining. This allows parts of the computation stage
to begin the reset phase before the full stage has completed. It
also reduces the complexity of each stage and thus decreases
the distance the completion signals have to travel. Aggressive
use of this strategy in slack matching[6] systems yields a
pipelining latch for every two gates. This produces optimally
pipelined circuits, unfortunately the latency introduced by the
additional latching causes tokens to now spend half the time
being latched.

Wagging logic attempts to increase the number of stages by
replicating the logic of each stage and cycling which copy of
the logic the data should go though. This allows one of the
stages to work while the others are resetting, yet it does not
increase the latency of the stage. Additional latency added
is outside the stage where the cyclic data distribution and
collection adds delay.

Each stage has a ”level of wagging” which signifies the
number of copies of logic the stage contains. Each copy is
called a ”slice” and has a slice number associated with it. The
inputs and outputs of each slice are connected to ”mixers”
which collect the data from the outputs of one wagging logic
stage and then distribute the data to the slices of the next stage.
The mixers also latch the data to allow the connected slices
to work independently. Figure 3 shows an example pipeline
with a combination of non-wagging and wagging logic stages.
These are connected using a selection of mixers.

Figure 3: Example Wagging Pipeline

2.1 Wagging Mixers
To connect two wagging stages, it is possible to multiplex

the data of the input stage to a single channel and then
demultiplex it again to the second stage. The alternative is
to demultiplex first to a set of intermediate channels and then
multiplex again. The number of intermediate channels is the
LCM (lowest common multiple) of the level of wagging of the
two stages. These constructions can be seen in figure 4.

When connecting two stages with an equal level of wagging,
multiplexing becomes unnecessary as the lowest common
multiple of any number and itself is itself. The output of stage
X is passed as an input to stage X+1 (mod the wagging level).
If a single level of wagging is used in an entire design, the
latency overhead is limited to the interfaces between wagging
and non-wagging logic. Because non-wagging logic segments
are likely to be the bottlenecks of the system performance, it is
advisable to place the interfaces on low bandwidth channels.

(4.1) Single channel mixer (4.2) LCM channel mixer (4.3) Direct
mixer

Figure 4: Mixer designs

2.2 Example Wagging Design
Figure 5 shows a design of a simple accumulator circuit.

The circuit has two operations: ”Load” reads a new value into
the register and ”Accumulate” adds the value in the register to
the input value and writes the result back to the register. The
type of operation executed is declared in the input token, and
it directs the multiplexer to pick the appropriate value. The
contents of the register is also passed out each cycle, but the
environment often discards the value and just acknowledges.
The worst case delay of the stage is the delay of the adder and
the multiplexer.

Figure 5: Example Accumulator Design

Figure 6 shows the design and example operation in a level
six wagging logic implementation of the accumulator. The
sequence of operations passed through it is:

0. Load
1. Accumulate
2. Accumulate
3. Load
4. Accumulate
5. Load



Figure 6: Wagging
Accumulator

In the figure, the data
dependencies can be seen in
the black arrows and units
(results of gray units were
discarded) . Because the
two sequences of accumulates
have no data dependencies
(the black line regions are
unconnected), the two sets of
accumulations can be executed
in parallel. This can be
seen in figure 7, where the
operations conducted by the
circuit are shown flattened.
Unless there is a conflict over
hardware resources, which in
this case there is little due
of the high level of wagging,
the timing of operations is
only dependant on the arrival
of inputs. If data of the
first self contained sequence
is late, or the computation
is slow, the second sequence
can complete before the first
has generated a result. This
allows proceeding stages to
reach ahead and try conducting
as much processing as possible
before they strictly require the
data from a late arriving input.

Because early output logic
uses bit level pipelining, each
bit of the result progresses to the next stage as soon as it
is calculated. This is highly advantageous when using units
such as adders which have an ordered sequence of desiring
input values and generating output values. This greatly reduces
the delay of two adders placed in series as parts of the result
generated early by the first adder are the parts desired first by
the second adder.

Figure 7: Flattened Accumulator Operation

3 Red Star
”Red Star” is a simple processor designed to explore the

possibilities of wagging logic. Using wagging logic, and
other techniques outlined below, the design becomes very large
and it is not suggested that this is a reasonable alternative
to common place practises at this point in time. What is

presented is a set of techniques which will become increasingly
viable as the price of increasing single threaded performance
(in both area and design effort) continue to rise. The target of
the design is to implement traditionally complex architectural
features with little design effort and combine this with the
fastest computation possible. The issues of area and power
consumption are not addressed at this point.

3.1 Datapath
The datapath is designed in a synchronous style with a small

alteration. The design is fully functional in the synchronous
form. The only alteration made is the addition of two stages
before committing the results back to the register bank or
updating the PC to a branch target. This increases the
branch penalty by two instructions (the branch shadow). This
penalty is unnecessary in the synchronous version and only
reduces performance. In the asynchronous wagging design this
increases the number of instructions prefetched. The penalty
of prefetching a greater number of instructions is not felt in
the wagging version as the resources wasted executing these
operations are not shared with the instructions fetched at the
branch target address. Nor is there a large delay before the
branch target instructions begin to be fetched, as the new PC
value quickly progresses through the two additional empty
stages and informs the target slice the address to fetch the next
instruction from.

Figure 8: Red Star Datapath

3.2 Register Bank
All storage, in early output logic, is constructed using FIFO

latches. Each cycle, the value is removed from the latch
and a new value is written to it. Register bank latches have
enable inputs which select whether the new data input should
be written or the old value should be recycled. This kind of
construction is wasteful of both energy and area, but it fits well
with wagging logic. In wagging circuits, the contents of the
whole register bank is copied to the register bank in the next
slice. If the data, a register is to be written with, arrives to the
register bank late, the value will arrive at the next slice some
time later than the others. Unless this register is read in the next
slice, there is no need to wait for its arrival before reading one
of the other registers. Once the value is entered into the register
bank in one of the previous slices, it can propagate through the
slices and quickly catch up the computation wavefront. This
enables the register bank to block while waiting for the value to
be written. Additionally this allows the register bank reads and
writes to be executed in parallel and even out of order. If the
value, to be written to a register, is still being computed, there



is nothing stopping the following instructions from writing to
the next slice of the register bank (to any register).

3.3 Caches
The two caches (instruction and data) are the only

connections between the processor and the environment. The
position of the interfaces between wagging and non-wagging
logic is likely to be a bottleneck unless a low bandwidth point
is chosen. Having a single cache shared between all slices
will cause the system to be bound by the performance of the
cache. The alternative of treating the cache like a register bank
and copying its entire contents to the next slice is impractical.
Here, two different approaches are used to allow independent
parallel access to a component, yet keep coherence between
the instances.

As data passes through slices of a wagged circuit, it may be
advantageous to be aware of which slice number it is currently
in. This can be easily achieved by placing a component
which outputs the slice number to the logic function. In the
synchronous design such a component can be made with a
mod X counter, where X is the wagging level. Although it is
not necessary to set the wagging level until the later stages of
the design process, if the slice number component is used, the
design must be aware at least of the width of the slice number
variable.

In the Red Star design the wagging level is targeted at 16.
If the processor starts executing an instruction from address
0 in slice 0, if there are no branches, the next instruction
to be executed in slice 0 will be from instruction address
16. If no branches were executed, slice 0 will execute only
instructions with the bottom four instruction address bits equal
to 0. The instructions in slice X will have come from an
address with the lowest 4 bits set to X. If the slices had separate
instruction caches with no coherency between them, the cache
of each slice would contain only the values of instructions
with the slice number at the bottom four bits. This is, of
cause, destroyed when branch instructions cause slices to fetch
instructions which have addresses not associated with that
slice.

By comparing the branch target address with the slice
number, it is possible to determine if the slice should fetch
this instruction or pass the branch target unchanged to the next
slice and execute a NOP. Only once the desired slice is reached
does the new code segment begin to be executed.

The advantage of this technique is to break up the large
instruction cache into small fast segments, allow their access
to be parallelised, ensure the data is not replicated between the
caches and allow the removal of the bottom four bits of the
address.

The data cache requires coherence between individual
caches but the bandwidth to it is much lower than the
instruction cache, so the option of having a single data cache
is a possibility. The alternative is to implement independent
write-through caches with a coherency network between them.
This is an attractive option as there is correlation between the
data addresses accessed and the instruction addresses they are
accessed from. This could lead to increased cache hit rates.

The data cache can be constructed using a set of separate
caches, along with a small level zero cache which is propagated

the same way as the register bank. The level zero cache stores
the write accesses of the previous N instructions. If there is no
write access to a cache in a slice, a value from the level zero
cache is written to the cache and the committed flag is marked
for that slice number in the level zero cache. Once a value
has been committed in all caches it can be removed from the
level zero cache. This strategy is somewhat complicated and a
routine to deal with an overflow of the level zero cache must
also be designed. It is also possible to reduce the number of
data caches from the number of slices down to a lower number
by sharing a single cache between several slices.

3.4 Hyper-Threading

The latch inputs to slice zero are of a different design than
the other latches in the system. Most latches are made with
a half-buffer design but the level zero latches must start with
a token reset time. These latches could start with two tokens
at reset time causing two computational wavefronts. Because
the data of the two wavefronts is carried with them, the circuit
holds no state when the next wavefront reaches it. This allows
the two wavefronts to be fully independent yet be executed on
the same hardware. This effectively replicates hyper threading
where a single set of resources is shared between two (or
more) threads. There are still points where the design must be
changed for the correct functionality. Elements which do not
keep all their data in the wavefront (in this case caches) must
be manually protected from one thread accessing or damaging
the data of another. This can be done by adding a variable
which holds the ID of the thread, carried by the thread. This
ID can be used inside the caches to determine which data is
accessible.

The second necessary change is the interface with non-
wagging logic. The interfaces now, rather than cycling through
the slices in order, must interleave accesses from the two
threads. This can be done in either deterministic precalculated
sequence, or using arbiters to serve the requests in order of
their arrival.

The latch controllers of slice zero can dynamically add or
remove threads from the processor with the state of the whole
thread being moved to or from the slice zero latches. This data
can be accessible through the memory interface and be stored
in RAM.

4 Conclusions
This paper presented a powerful strategy to overcome the

greatest obstacle in generating high performance asynchronous
circuits. The application of the method and additional high-
performance techniques are demonstrated on an example
processor design. Implicit data dependency tracking allows
the engineer to concentrate on higher level architectural
improvements rather than worrying about blocking stages and
sharing resources.

Although this method has the ability to create very high
speed circuits, it does come at a large cost and is probably
still too expensive to justify its use. As the cost of increasing
single thread performance increases, this strategy will become
progressively more viable.



4.1 Future Work
Some preliminary experiments have been conducted on

wagging circuits, which yielded favourable results, but the
method is still largely manual. The target of future work is to
implement a complete flow of specification, implementation,
optimisation and technology mapping. The final flow should
be adequately comprehensive to be used in an industrial
setting.

Parts of this flow, such as wagging logic generation,
optimisation and dynamic timing analysis, have been
implemented before as stand alone components. These are
currently being reimplemented into a single modular tool
which allows information from simulation based analysis to
be used in all stages of the design process.

To demonstrate the technique, Red Star will be synthesised
down to layout level, with the possibility of a manufacturing
run. It is hoped that the design could compete with current high
performance cores, but with a fraction of the design effort.

References
[1] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and

N. C. Paver. AMULET2e: An asynchronous embedded
controller. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages
290–299. IEEE Computer Society Press, 1997.

[2] J. D. Garside, W. J. Bainbridge, A. Bardsley, D. M. Clark,
D. A. Edwards, S. B. Furber, D. W. Lloyd, S. Mohammadi,
J. S. Pepper, S. Temple, J. V. Woods, J. Liu, and O. Petlin.
Amulet3i - an asynchronous system-on-chip. In ASYNC
’00: Proceedings of the 6th International Symposium
on Advanced Research in Asynchronous Circuits and
Systems, page 162, Washington, DC, USA, 2000. IEEE
Computer Society.

[3] Montek Singh, Steven M. Nowick, Jose A. Tierno, Sergey
Rylov, and Alexander Rylyakov. An adaptively-pipelined
mixed synchronous-asynchronous digital fir filter chip
operating at 1.3 gigahertz. In ASYNC ’02: Proceedings of
the 8th International Symposium on Asynchronus Circuits
and Systems, page 84, Washington, DC, USA, 2002. IEEE
Computer Society.

[4] Montek Singh and Steven M. Nowick. High-throughput
asynchronous pipelines for fine-grain dynamic datapaths.
In ASYNC ’00: Proceedings of the 6th International
Symposium on Advanced Research in Asynchronous
Circuits and Systems, page 198, Washington, DC, USA,
2000. IEEE Computer Society.

[5] Charles Brej. Early Output Logic and Anti-Tokens. PhD
thesis, 2005.

[6] Peter A. Beerel, Nam-Hoon Kim, Andrew Lines, and
Mike Davies. Slack matching asynchronous designs. In
ASYNC ’06: Proceedings of the 12th IEEE International
Symposium on Asynchronous Circuits and Systems, page
184, Washington, DC, USA, 2006. IEEE Computer
Society.


