
ck. A
ake

y wel-

ais-
are low
sed
set of
e data.
ing to
An automatic synchronous to
asynchronous circuit convertor

Charles Brej
Abstract

The implementation methods of asynchronous circuits take time to learn,
they take longer to design and verifying is very difficult. For these reasons
tools are used rather than designing by hand. Unfortunately by adding this
level of abstraction the designer rarely has any idea of what the gate level
design will look like and how to opitomise it. To try and solve some of these
problems this paper introduces a new approach where synchronous designs
can be easily converted to their asynchronous counterparts and still keep all
of the functionality of the original circuit. There are limits to what this sys-
tem can convert but generally most synchronous state machines can be
converted.

1. Introduction

It is difficult to visualise the operations of asynchronous circuits and make sure they do not deadlo
tool that would allow a designer to design circuits and optimise them at a very low level, yet still m
sure that no deadlocks or hazards occur and still create high performance circuits, would be ver
come. This is exactly what the tool introduced in this paper is trying to achieve.

The basis of the tool is “dual-rail”. Dual-rail signalling uses two wires to represent one bit of data. R
ing one line represents a zero and raising the other line represents a one. When both of the lines
then no data is being sent (this is called the “null” signal) [JDG]. Return To Zero [RTZ] protocol is u
to communicate the dual rail codes around the circuit. RTZ is a four phase protocol where the a
wires (in this case two) send data and the target raises an acknowledge wire when it receives th
The host then returns to its null state by lowering its data line. When the target sees its input return
null it signals that it is ready to accept new data by lowering its acknowledge line.

2. Three stage counter walk-through

2.1. Target circuit

Figure 1 shows a synchronous finite state machine
circuit. This circuit cycles through three states.

Each symbol in this figure instantiates a logic circuit,
the realisation of which is abstracted at this level. To
convert this to an asynchronous circuit the compo-
nents can be replaced by their dual-rail asynchronous
counterparts. The counterparts have to have dual-rail
inputs and outputs.

FD

QD

C

FD

QD

C

INV

OR2

FIGURE 1. Synchronous
Implementation of a modulo-3.

cepts

it has
ir out-

version.

to be
2.2. Component substitution

An asynchronous circuit can be generated by substi-
tuting each component in the synchronous original
with its dual-rail equivalent from the appropriate
library. Each net is duplicated and renamed with ‘_0’
and ‘_1’ postfixes to represent the two Boolean val-
ues. The complex dual-rail gates can be abstracted to
their own symbols. Figure 2 shows the dual-rail
implementation of the three stage counter circuit cre-
ated by replacing the synchronous elements with
equivalents in the standard dual-rail library.

The upper latch outputs data to the OR gate where it
is synchronised with the data from the lower latch.
When both inputs are valid the OR gate will output a
value. This value then goes through the inverter and into the lower latch. The upper latch simply ac
the data from the lower latch. These forward data paths are shown in dotted lines in the figure.

To control the data flow in the absence of a clock each latch emits an acknowledge signal when
accepted new data. Other latches wait for an acknowledge signal before removing data from the
puts. If a latch outputs to two latches then both acknowledge signals have to be combined using a C ele-
ment. This sequences the operation of the circuit.

2.3. Dual-rail gates

An implementation of a dual-rail OR gate can be seen in
Figure 3. This is a very large component compared with
the original OR gate. The set of four C-elements make
sure that the output only switches when all inputs have
switched to valid states. For any two input gate four C-
elements are required. For any three input gate eight C-
elements are required. As the number of inputs to a gate
rises the number of C-elements in its asynchronous
counterpart rises geometrically. Also the number of
inputs to these C-elements rises with the number of
inputs to the gate. Fortunately in dual rail logic an
inverter has no cost as inside an NOT gate the two nets are simply swapped over to create the in

Substituting combinatorial logic components is fairly straightforward and no considerations have
made. This, unfortunately, is not the case when replacing data storing elements.

2.4. Dual-rail latch

Figure 4 is a schematic of a simple dual-rail
latch commonly used in asynchronous designs.
These latches follow the four phase RTZ proto-
col. When a latch is not receiving an acknowl-
edge it will take an incoming datum and store it
in the C-elements. If any datum is stored in the
C-elements the latch will send the acknowledge
signal out. There is a reset signal connected
which will clear the latch but only if the data
inputs are low.[JDG]

FIGURE 2. Dual-rail implementation of
the three stage counter.

FD

FD

FD_A

FD_B

C_1

C_0

B_1

B_0

A_1

A_0

OR3

FIGURE 3. Asynchronous dial-rail
counterpart to the two input OR gate.

OR2

Q_1

Q_0

D_A

GSR

Q_A

D_0

D_1

NOR2

FIGURE 4. Simple dual-rail latch

and
with
hows
a as it
test’
will in
atches
t.

data to
_A)
needs
before
input

edged
o one
r and
When implementing pipelines there must always be at least
twice as many latches as data tokens because data tokens
are always separated by ‘null’ tokens. However using just
two simple latches to replace the D-type flip-flops can
cause the circuit to deadlock. Synchronous flip-flops act on
a clock signal and can get new data and lose the old data
instantaneously while latches need to go through a ‘null’
stage before a new output is valid.

The minimum number of elements in a loop is therefore three: one to hold ‘data’, one to hold ‘null’,
one ‘free’ to allow one of the other values to move forwards. The ‘flip-flops’ are therefore replaced
sets of three dual-rail latches. This is allows a latch to accept data while still transmitting. Figure 5 s
two latches in a loop where latch A is transmitting data to latch B but latch B cannot accept this dat
is still receiving an acknowledge; the circuit is deadlocked [JDG]. In situations other than the ‘tigh
loops, having 50% more latches than required can introduce a large delay overhead. The tool
future versions remove latches where possible and the delay cost is too large. At reset time all l
must start with a data token to represent the data in the synchronous version of the circuit at rese

2.5. Acknowledge circuit

Each latch requires an acknowledgement when all the latches it outputs to have received the
allow it to return to null; This is also true in the return to zero stage. In Figure 2 the top latch (FD
needs an acknowledge from FD_B as that is the only latch it outputs to. The bottom latch (FD_B)
a combined acknowledge from both latches as it needs to wait until both have accepted the data
removing it from the bus. This is reflected by the C-elements in the return paths; clearly the single
gate can be optimised away!

2.6. Simulation

When simulated this design will run as fast
as possible as it has no inputs or outputs to
synchronise with. Figure 6 shows the simula-
tion of this circuit. Unfortunately the design
is very slow due to the complexity of the
dual-rail gates.

The other problem with this approach is that,
even if one of the signals is received by the
OR-gate and the output can be resolved, the
gate waits for the second input before driving
the output. This wait is necessary so the
acknowledge signal is asserted only when all
inputs are valid otherwise a signal will could after the other pieces of data came and were acknowl
and thus the data incoming is one stage behind. The logical and timing circuits are combined int
large and slow circuit. By separating out the timing and the logical parts we can achieve a smalle
faster implementation.

FIGURE 5. Two latch loop deadlock

A B

FD_A_0

FD_A_1

FD_B_0

FD_B_1

FD_I_0

FD_I_1

FD_A_A

FD_B_A

FD_C_A

GSR

200n 205n 210n

Time (Seconds)

D

i

g

i

t

a

l

FIGURE 6. Simulation wave of dual-rail three
stage counter.

r the
These
These

and
3. ‘Unguarded’ elements

3.1. Unguarded OR gate

The original, dual-rail library used components with both timing and
logical elements. By separating out the timing and the logical parts it
becomes possible to achieve a smaller and faster implementation. This
library of components is called ‘unguarded’ as it has no timing controls.
The circuit in Figure 7 shows an unguarded implementation of the dual-
rail OR gate. This implementation will raise the output O_1 high when
either of the inputs signals a one as at this point the result is known.
Unfortunately the separation of the logical and timing parts could cause
a hazard by ceasing to observe one (or more) input. This is prevented by
adding a third, ‘validity’ signal which indicates that the gate’s input set
is complete. The O_VALID line is only raised when both inputs are
valid. This gate is now about two times smaller and faster than the
guarded version.

3.2. Unguarded implementation

In order to create circuits using these gates a
test must be made to make sure all the inputs
are valid before acknowledging them. In the
previous design style the result would only
become valid when all inputs were valid and
the logical operation has a result. In the
unguarded implementation the acknowledge
from the latch means only that the logical part
of the operation has completed. Some of the
inputs might not yet be valid so the circuit
must wait until all inputs are valid before
acknowledging. To allow this latches have a
VALID pin added which states if the latch is
outputting a value. Figure 8 shows an interme-
diate circuit created by the tool where the validity nets are shown with dashed lines. Directly unde
OR and NOT gates are C-elements combining the validity signals of the inputs to these gates.
validity nets are then combined with the unguarded acknowledge of the latch the data flows into.
trees of C-elements can be flattened down to one large C-element.

Figure 9 shows the tool’s final implementation
of the modulo-3 counter using the unguarded
element library. In this design two new C-ele-
ments (CA_A and CA_B) are used to signal
when the latches acknowledge and all the
inputs are valid. These replace the validation
and combining with acknowledge C-elements
from Figure 8. The outputs of these C-elements
replace the acknowledge outputs from the
latches in the guarded design. C-element
CA_A takes the acknowledge signal of FD_A
and the validity signals from all latches that
feed into FD_A (in this case FD_B VALID
pin). Now CA_A outputs the guarded acknowl-
edge of FD_A. CA_B similarly takes the
acknowledge from FD_B and the validity sig-
nals from all latches that feed into FD_B and outputs the guarded acknowledge of FD_B. CB_A
CB_B as before combine the guarded acknowledge signals from the latches.

I0_1
O_0

I1_0

I0_0

I1_1

O_1

I1_VALID

I0_VALID

O_VALID

AND2

OR2

FIGURE 7. Unguarded
dual-rail OR gate

FIGURE 8. Unguarded dual-rail
implementation of the modulo-3 counter

FD_B

FD_A

FD

FD

FIGURE 9. Unguarded dual-rail
implementation of the modulo-3 counter with
combined validation C-element trees.

CB_B

CB_ACA_A

FD_B

FD_A

FD CA_B

FD

ues-

h B to

s the
y con-
bit tries
which
is an

it will
S is

en data
he user

latch
ing
l uses
these

hange
inputs

ts are
4. Does it work?

It is difficult for to prove that this system works but the following are some of the most common q
tions.

4.1. How do inter-pipeline stage communications work?

A common misconception is that these sys-
tems cannot communicate across pipeline
stages. Figure 10 shows an example of a gate
whose inputs come from two different stages.
The gate expects the stages to be filled with
data five clocks apart. The figure shows that
one of the stages is not filled and the gate is
looking at the wrong data. This situation will
not arise as both the source latches are synchronised by the latch C and this doesn’t allow latc
move onto the next set of data until latch A has entered its inputs. [AB]

4.2. How does this approach cope with large logic blocks?

When using this approach to implement blocks of logic with a large number of inputs and output
quantity of inputs into the C-elements grows to amounts where it becomes far too slow and energ
suming to use this approach. When creating elements such as a 32 bit adder then the top output
to synchronise all the inputs as it is dependent on them. This would require a 65 input C-element
is far too costly for such an operation. To solve this problem we introduce a new element. It simply
empty latch and is described in the next section.

4.3. Is there anything it cannot do?

There are two circuit types that the tool cannot convert. The first is
the tristate buffer nets. This functionality will be added to future
versions of the tool. The second is already asynchronous circuits.
These types of circuits cause deadlocks as one wire can change state
more than once per clock cycle and a circuit not involving a latch
can have hysteresis. Figure 11 shows an example of an asynchro-
nous circuit deadlocking after conversion. Both gates are co-
dependent on each other’s results to produce and output. In a guarded implementation this circu
deadlock every time. In and unguarded implementation this will only deadlock when R is high and
low. This is because the circuit is designed to keep its state but as the circuit is always reset betwe
stages there is no state to keep. The tool will not detect these circuits and convert them assuming t
has made sure deadlocking situations will never arise.

5. Optimization

5.1. Empty latch

All latches in the system start at reset with valid data similar to the synchronous version. The empty
is a latch that starts with no data inside and so is functionally invisible. It is an effective way of divid
a pipeline stage into two or more sections. Currently in the synchronous design schematic the too
buffers to represent empty latches as they are functionally invisible. If in the example of the adder
empty buffers were placed on the carry chains the functional operation of the adder would not c
but these buffers would split the element into 32 pipeline stages. Each stage would have only three
and two outputs. More interestingly the carry output often can be calculated before the all inpu

FIGURE 10. Inter-pipeline stage
communication example

BA

C

S
R

Q

FIGURE 11. S-R latch
deadlock example

its can

ses an
stage

ct and
stage
and
hen

h dual-
ome

tion for
ronous

in my
llent

90.
valid. If this adder was placed inside a processor running code that adding two numbers, many b
be output before the whole computation is completed.

5.2. Pre-emptive acknowledge

The above example showed how the not all inputs are required to form some outputs. In other ca
input is not required at all as the other inputs have already resolved all outputs. In this case the
stalls and waits for a valid input before acknowledging. For example a multiplexer can get the sele
the desired data input but will have to wait for the second data input. The desired situation is if this
would be able to move to the next set of data from the inputs and tell the stalling input to go
acknowledge itself. This method is not yet implemented into the tool but will be a future feature. W
used correctly the tool produces circuits of asynchronous elements with acknowledge lines on eac
rail bus. Basically 1 bit wide pipelines. By creating these circuits it becomes possible to forward s
bits of the result to the next operation while others are still being worked on.

6. Conclusions

This paper presents a tool for converting synchronous designs and a very elegant level of abstrac
designers. The tool is just an example of the advantages of this approach to designing asynch
logic and is probably not the best implementation.

6.1. Acknowledgements

I would like to thank James Garside and Andrew Bardsley and others who have found many holes
theories. Also all the members of the Amulet group and the UK Async. forum which is an exce
place to bounce ideas around.

6.2. References

[RTZ] Martin Rem,“The Nature of Delay Insensitive Computing”, Higher Order Workshop, Banff 19

[JDG] Conversations with Jim Garside.

[AB] Conversations with Andrew Bardsley.

[WT] Conversations with William Toms.

	1. Introduction
	2. Three stage counter walk-through
	2.1. Target circuit
	2.2. Component substitution
	2.3. Dual-rail gates
	2.4. Dual-rail latch
	2.5. Acknowledge circuit
	2.6. Simulation

	3. ‘Unguarded’ elements
	3.1. Unguarded OR gate
	3.2. Unguarded implementation

	4. Does it work?
	4.1. How do inter-pipeline stage communications work?
	4.2. How does this approach cope with large logic blocks?
	4.3. Is there anything it cannot do?

	5. Optimization
	5.1. Empty latch
	5.2. Pre-emptive acknowledge

	6. Conclusions
	6.1. Acknowledgements
	6.2. References

