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A MIPS R3000 microprocessor on an
FPGA

Charles Brej

1  Introduction

The aim of the project was to implement a complete processor that is still widely 
today. Of the many potential processors that were considered the one that was c
was a MIPS R3000 microprocessor due to its simple instruction encodings. The R3
microprocessor is not just a processor as it also includes cache, memory manage
and a coprocessor interface. (It is also capable of handling exact exceptions)

1.1  History of RISC

When the first processors and Instruction Set Architectures (ISAs) were created p
gramming was very difficult and so complex instructions that looked more like hig
level languages were added to each ISA family. To allow old software to run on n
computers the instruction sets were expanded and became more and more compl
add to the complexity issue memory prices were very high and to fit a program in
very small space it was necessary to create instructions with varying lengths. Als
memory was a lot faster than the processor and so keeping all variables in memory
quite logical. In a completely different direction to the CISC movement of increasin
complex instruction sets the RISC adopted a totally different approach. By keepin
instructions the same size decoding becomes simple. Having a large register ban
decreases memory accesses which are increasingly slow compared to the CPU s
on modern computers. Implementing only simple and common operations the pro
sor speed can be increased and chip area can be decreased. Having a much simp
architecture allows the CPU to implement other speed increasing methods much
simply for example pipelining.

1.2  Load Store Architecture

MIPS microprocessor instructions only allow registers or small immediates to be 
ands of operations. CISC on the other hand often has instructions which use mem
stored data as operands. This makes the execution harder. For example the 8086
instruction ‘CMP AX, ES:[SI+02]’ firstly requires 2 to be added to SI and the result
be added to ES shifted by 4 this creating an effective address to load a 16 bit word
sibly non-word aligned so multiple loads are required) from memory then compare
AX and write the flags created by the comparison to the flags register for use by 
next conditional jump instruction. This scheme is difficult to implement and the
instruction goes several times through the ALU. MIPS microprocessor instruction
only go through the ALU once and never after a memory access. If an operand fr
memory is required it is loaded into the register bank first and only then used in s
quent operations. This allows the creation of a very simple architecture which is ea
A MIPS R3000 microprocessor on an FPGA 13 February 2002 1
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pipeline. A typical MIPS microprocessor uses a five stage execution pipeline as sh
in Figure 1 on page 2.

In a five stage pipeline there are two memory ports: one for instruction fetch and 
for data accesses. To deal with this either two separate memories can be used o
memory access between the two ports. This is called Harvord architecture.

1.3  History of pipelining

Pipelining is a method of getting more than one instruction to execute simultaneo
By dividing the path that the instruction has to go through in the CPU into segmen
and placing latches at the beginning of each segment instructions will take severa
clocks to execute instead of one. But as MIPS microprocessor instructions only v
each segment once they only occupy one segment allowing other instructions to 
straight after them and occupy other segments.

There are problems that arise with pipelining. Firstly if an ALU instruction writes t
register that is required in the next instruction the data in the register bank is not 
updated when the second instruction requests it as the data is now at the end of 
ALU stage. The easiest way of getting the data back to the next instruction is to p
off the result from the ALU stage and replace the register bank value with it. The sa
can be done for data that is at the end of the memory stage. This still does not solv
problem of using a result from a memory operation on the next cycle. This can be

Instruction
Fetch

Register
Fetch /
Decode

ALU Memory Register
Writeback

FIGURE 1. Five stage pipeline
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FIGURE 2. Five stage pipeline datapath
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solved by the processor inserting a NOP instruction if it detects a dependency or
compiler simply never using a result from a memory operation on the next cycle.

1.4  Powerview

To design a MIPS microprocessor compatable CPU a schematic entry package c
Powerview was used. There was an option of using VHDL which would probably h
been easier but because many of the ideas implemented were new a more graph
approach was favoured. As many hours were spent running simulations of the pr
sor the graphical approach gave much better visibility of the instruction flowing
through the pipeline.

1.5  FPGAs

The idea of the project was not to implement the processor only in simulation but
run it on real hardware. An FPGA (Field Programmable Gate Array) chip allows a
logic design to be downloaded to it. The target board has a ‘Xillinx Virtex XCV300
chip. This allows up to 300,000 gates to be placed on the chip. It also has 64 Kbi
RAM in 16 blocks called select RAMs. As gates are made from look up tables (LU
it is possible use the LUTs as 32 bit RAM cells called RAM blocks. These RAM c
use as much logic one latch.

1.6  Source Material

The information about MIPS microprocessors was taken from a book by Gerry Ka
and Joe Henrich called “MIPS RISC Architecture”. This book stated all informatio
needed to create an R3000 microprocessor. The book was written for people writ
software and so gave very little architectural detail.

2  MIPS Microprocessor Specifications

2.1  Instructions

All instructions are 32 bit and come in three formats (R-type, I-type and J-type). M
instructions are three address operations taking two sources and one destination

DATA
RAM

REG

BANK
ALU

INST

RAM

FIGURE 3. Five stage pipeline with
A MIPS R3000 microprocessor on an FPGA 13 February 2002 3
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R-type (sometimes called Special) instructions allow a range of register to registe
operations. The I-type instructions allow a 16 bit immediate to replace one of the 
ands. The I-type instruction format is also used for memory accesses and for con
tional branches. The J-type format has a 26 bit immediate field and the only instruc
to use this format is a jump which places the value in the bottom 26 bits of the prog
counter. A more detailed description of the instruction set is shown in appendix A

2.2  Registers

A MIPS microprocessor has 32 addressable registers. Register zero (R0) is specia
is always equal to zero and writes to it are ignored. R31 is a normal register but w
executing any branch or jump with store return address, the next PC is stored in R3
addition to the addressable registers there are three more implemented registers
Program Counter (PC) is not a part of the main register bank. It is accessible dire
through Jump to Register (JR) for writing and Branch And Link (BAL) for reading.
The other two registers are LO and HI. These registers are used for the results o
multiplier and divider. Although these can also be also accessed directly by Move
and From LO and HI instructions. All these registers are 32 bits wide although the
tom two bits of the PC should always be zero.

2.3  Conditions

There are no condition flags but instead all branches are conditional on the value
the registers in the main register bank. Each conditional branch instruction specifi
two registers (RS and RT) to be fetched and tested. A branch is conditional on th
results of two tests. The first is compare the two registers together to test whethe
are equal (RS=RT). The other test is simply to look at the sign value (bit 31) of the
register (RS<0). By choosing the second register to be R0 (RT=0) its becomes pos
to test RS for less than greater or equal to zero or any combination of the three. F
unconditional branch the Branch if Greater or Equal to Zero instruction (BGEZ) is
used with R0 as an operand. This condition will allays be true.

TABLE 1. Branch Condition Table

Branch Condition

Equality
Test
Required
Result

Sign Test
Required
Result

BEQ 1 X

BNE 0 X

BLTZ X 1

BGEZ X 0

R-Type RS RT RD SA Operation

I-Type RS RT 16 bit Immediate

J-Type 26 bit Immediate

31... ...0
FIGURE 4. Instruction encodings
A MIPS R3000 microprocessor on an FPGA 13 February 2002 4



(RS)
ce the
ad or
so all
ligned
ore
in

S
eir
)

 a
sor
the
thers

ion.
aded
ent
eady
e
n. If
 fill
2.4  Memory

Memory access instructions are included in the I-type format. The source register
is added to the immediate to create an effective address which is used to referen
memory. The second register (RT) is either used as the destination in a memory lo
as a source in a memory store. The memory is byte addressed but is 32 bit wide 
word loads and stores have to be word aligned. Half word accesses have to be a
to half word boundaries. To help with unaligned loads and stores there are two m
memory access instructions. Load Word Left (LWL) and Load Word Right (LWR) 
combination allow word loads from unaligned addresses.

2.5  Pipeline Interlocking

MIPS stands for ‘Microprocessor without Interlocking Pipeline Stages’. In the MIP
microprocessor this means that some instructions have an implicit delay before th
effect takes place. (This is not strictly true as the multiplier/divider has interlocking
The general philosophy is to construct the hardware as simply as possible and, if
result is not ready for use in the next instruction then not to stop the whole proces
but use the software to insert instructions into the space. The two main delays in 
MIPS microprocessor are branch shadows and memory load delays. There are o
but they happen very rarely and will be explained later.

2.5.1  Branch shadow

When a branch is executed the PC is only updated at the end of the next instruct
This is because the MIPS microprocessor designers were using a pipeline that lo
the next instruction from memory while decoding the current. By the time the curr
instruction is decoded and the CPU detects it as a branch the next instruction is alr
loaded. The PC is updated by the time the next instruction after that is loaded. Th
branch shadow is filled with a useful instruction that the branch is not dependent o
this instruction can not be found then a NOP (Do nothing) instruction is placed to
the entry. Figure 5 on page 5 shows firstly the compiler unconditionally inserting a
NOP instruction into the branch shadow. Then later the NOP is replaced with an
instruction not related to the branch.

FIGURE 5. Assembly example

ADD  R3, R3, R3
ADD  R4, R5, R4
BGEZ R4, label   <- Branch instruction
NOP              <- Branch Shadow
...

BLEZ 1      OR 1

BGTZ 0      OR 0

TABLE 1. Branch Condition Table

Branch Condition

Equality
Test
Required
Result

Sign Test
Required
Result
A MIPS R3000 microprocessor on an FPGA 13 February 2002 5
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ADD  R4, R5, R4
BGEZ R4, label   <- Branch instruction
ADD  R3, R3, R3  <- Branch Shadow
...

2.5.2  Load Delay

Before a load can complete the address must be calculated and then the load fro
memory can begin. As this uses two cycles the result is not ready for the next ins
tion to use as at the time it wants the value the instruction has only calculated the
address it is about to access. Again there is a empty entry into which a useful ins
tion can be inserted if possible. Figure 6 on page 6 shows the compiler uncondition
inserting a NOP between the LW and the next instruction. The NOP is removed if
next instruction does not use the result of the load or an instruction is moved into
space from somewhere else in the code if it is unconditional of the load.

FIGURE 6. Assembly example

ADD  R2, R3, R3
ADD  R5, R4, R20
LW   R1, 32(R5)
NOP
ADD  R1, R1, R2
...

ADD  R5, R4, R20
LW   R1, 32(R5)
ADD  R2, R3, R3
ADD  R1, R1, R2
...

3  MIPS Microprocessor Construction

It was decided to create a simple version of the processor which can then be use
base for the fully implemented version. The smaller version of the processor is ca
‘Little Star’. To allow extra features to be placed onto this processor later it is import
to make the base with the later components in mind.

3.1  Pipeline

It was an aim to reproduce the processor as it was designed originally and the co
pipeline is essential in order to get the same instruction delay properties as the ori
without using interlocking. The hints as to the construction of the pipeline come fr
the non-interlocking properties shown above. Firstly examining the fact that cons
tive ALU instructions have no delay means that some form of forwarding is proba
taking place. The memory loads have to take the result from the ALU and then pas
calculated address to the memory. The result is ready for use on the next cycle so
a forwarding scheme must be used. The branch shadow on PC altering instructio
means that instruction prefetch happens irrespective of the instructions executed
fact that branch shadow is only one cycle deep means that the PC must be upda
within of one cycle of the instruction entering the CPU. By using these rules it is po
A MIPS R3000 microprocessor on an FPGA 13 February 2002 6
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ble to construct a simple pipeline that fits these requirements (Figure 7 on page 7

There is a problem with this pipeline. The branch unit requires results of the tests
values of registers. Although it is possible to read the registers and test if they ma
the branch conditions within the decode cycle they will be the values from the reg
bank rather than the data from the forwarding paths. If the code affected the regist
one of the three instructions previous to the branch conditional on this register then
register bank would not be updated. To deal with this the Decode stage is cut dow
half a cycle. This way it is possible for the branch to complete within one cycle of
instruction fetch and still get forwarded values only available at the beginning of t
ALU stage.

By also decreasing the write back stage down to half a cycle it is now possible to u
register bank that does not need to have the ability of loading and storing simulta
ously.

3.2  Register Bank

The register bank is implemented using RAM blocks rather than explicit flip-flops
(Figure 9 on page 8). RAM blocks are single ported so two identical copies are
required to provide the two simultaneous register reads. Despite this they give a m
compact solution than explicit registers. Read and write access is achieved by div

Instruction
Fetch

Branch

Register/
Decode ALU Data

Memory Write Back

FIGURE 7. Simple five stage
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FIGURE 8. Improved five stage pipeline
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each clock cycle into two phases. In the write back half of a cycle the register add
to write to is sent to both RAM blocks. The data is written on the clock edge. To ens
data is never written to register zero the write enable line is de-selected if the writ
address is zero. The read portion of the cycle selects the address to be supplied 
RAM blocks to be the register addresses from the current instruction. These are 
read for the next half cycle. After reading, the data is latched outside the register b
The RAM blocks are explicitly preset to zero so R0 is never written to and will alla
be equal to zero.

3.3  ALU

The ALU is made from a logical unit and an arithmetic unit. The results from these
then multiplexed and the desired value is selected. The arithmetic unit is little mo
than a 32 bit adder with a switchable negator on the second input. The arithmetic
must also detect overflows. The adder is constructed from cells that contain fast c
logic elements which are especially constructed for carry propagation to increase
speed. Results of tests by Xilinx who design the FPGA chips show that 32 bit addit
can be done at speeds of over 200MHz when using fast carry logic units. The log
unit was made with simplicity in mind rather than compactness or speed. Each pa
bits is applied to all four logical operators (AND, OR, XOR, NOR) and the reques
one is multiplexed out with a four to one multiplexer.

3.4  Shifter

The construction of the shifter was quite complex because conventional barrel sh
designs require a 32 by 32 grid of elements similar to a 32 input multiplexer. This
design is quite fast when designing with custom components but very large when

INV
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RAM32X32S
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FIGURE 9. Register Bank schematic
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sidered for a FPGA chip. To get round this problem a funnel-type shifter was use
Firstly the value to shift by is negated if the shift is to the right. Then the value to b
shifted goes through a series of 5 multiplexers each rotating by a different amoun
(1,2,4,8,16). Because the negator resolves the least significant bit of the ‘shift by va
first the least significant rotate multiplexer must be the first in the series in order t
a increase in speed. The series of multiplexers rotate the number to the correct po
and a mask must be used to cut out the unwanted part of the number. Left shifts 
out the bottom bits and right shifts mask out the top bits. To make the design sim
32 way demultiplexer selected with the ‘shift by value’ is used to signal the top bit
the number for right shifts or the top bit to be discarded for left shifts. A series of 
gates propagates the signal to all bits below it. This mask only works for left shifts
has to pass through XOR gates to optionally invert it for use with right shifts. The m
feeds select lines on a block of two to one multiplexers which select between the
rotated number and the fill bit. The fill bit is zero for all logical shifts but for the rig
arithmetic shift it is equal to bit 31 of the pre-rotated input number. The resulting u
allows right and left arithmetic and logical shifts.

3.5  Memory

The memory address is calculated by taking a register and adding the 16 bit offse
immediate just like an I-type ADD instruction. The other register is not used at thi
point and is passed to a latch for use in the memory stage even if the instruction 
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FIGURE 10. Shifter Schematic
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load. Passed to the memory stage is the source or destination register and the add
access. Firstly looking at a store instruction as the memory is 32 bit wide and there
no byte select lines on the on board RAM a whole word has to be stored at a time
store instructions with the exception of SW need to store only a part of the whole w
This means that the word has to be loaded from memory, amended and written b
The MIPS microprocessor supports byte, half and word accesses. In addition it a
supports word left and right instructions which rotate the value to be written to mem
and mask it into the lower or upper part of the word. Memory interface instructions
described in more detailed in appendix A. To allow all the different memory acces
for the first half of the cycle the memory word is loaded into a ‘Memory before wri
latch. The source register data is rotated dependant on the memory store type an
two lowest bits of the address. The data to write to memory is then a combination
bytes of the ‘Memory before write’ and the rotated register data. The memory loads
done in a similar way. There is no need to load the ‘Memory before write’ latch. T
time the data from memory is rotated and then bytes are selected from this and th
tination register. To allow byte and half loads with a possible sign extension a me
of setting any byte to one or zero is used. The MIPS microprocessor is a Harvard a
tecture design so it needs to access instruction and data memory simultaneously.
‘Little Star’ this is achieved by taking advantage of the fact that the instruction fetc
and data access start half a clock cycle apart. The memory swaps between data 
instruction accesses with each phase of the clock. Mentioned before is the metho
storing by loading for half the cycle. To allow this two clocks must be used. The g
eral chip clock that drives the majority of the chip is in turn driven by an input cloc
that is twice the frequency of the general clock. This input clock is used to get a h
partition of the half cycle devoted to the data store. The ‘Little Star’ must run very
slowly as a half clock must be longer than two memory accesses.

3.6  Branch

Each cycle the Program Counter updates to one of three values. The first possible
is PC+4. This is the most common case and the PC+4 value is generated using a
incrementer. The second possibility is a JR instruction. This feeds a new number t
PC from a general register. It is important to pass the number from the forwarding
paths if a newer valid value exists rather than directly from the register bank as th
value there might not be updated yet. The third option is a branch, to execute a c
tional branch firstly the conditions must be met. The two test registers are taken f
the forwarding paths and compared if equal. This result and the sign of the first reg
are passed to the branch logic. The branch logic returns a flag to the multiplexer st
whether to load the branch target or the PC+4 value. The branch target is calculate
adding the current PC to the 16 bit sign extended immediate. There is one more 
that is not covered and that is the jump. The jump takes a 26 bit immediate and pla
in the bottom of the PC preserving the top four bits. This encoding was done by reu
the branch adder to save space. The bottom 26 bits from the PC are nulled leaving
the top four bits from the old PC value to be passed to the adder. The immediate 
passed as a 26 bit rather than a 16 bit value. To record the return address the PC
value is latched and then multiplexed onto the pipeline as the result of the ALU st
A MIPS R3000 microprocessor on an FPGA 13 February 2002 10
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3.7  Forwarding

The destination register number is usually explicitly specified in the instruction.
Instructions that branch and link the return address need to have the destination re
set to R31. All other instructions that do not have a destination have the destination
ister number set to 0. Each instruction unconditionally fetches the two registers s
fied in the instruction from the register bank. The destination register number is pa
down with the instruction along the pipeline until it reaches the write back stage. T
requested source register number is compared to each of the destination register
bers flowing through the pipeline. If any of them match then the register bank valu
discarded and instead the value from the forwarding path is multiplexed in. It is im
tant that the value forwarding from the ALU stage takes priority over the one from
memory stage so as to get the more recent value. The comparators that detect if re
numbers are equal also make sure that R0 is never forwarded as any calculated va
meant to be discarded and may be not equal to zero.

4  Advanced MIPS specifications

All these elements in combination make a processor capable of running MIPS co
This simple version processor was called “Little Star”. At this point in the construct
a lot of testing took place to verify the underlying structure of the processor. Altho
‘Little Star’ is capable of running code it does not implement some of the ‘advanc
features of the original chip. The full R3000 microprocessor compatible chip is ca
‘Yellow Star’ and includes a cache, memory management, coprocessors and exa
interrupt handeling. These additional features are described below.
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PC_BR_IMM[31:0]
INSTRUCTION[25:0]

I[31:0]

NULL

O[31:0]

NULL

NOTSYSCALLPC[31:0]

INTERRUPT
TAKEBRANCH

JMP2REG

PC_PLUS_FOUR[31:0]

CLK2
GLB_EN

A[31:0]

B[31:0]
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I[31:0] O[31:0]

32
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O[31:0]
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FIGURE 11. Branch Schematic
A MIPS R3000 microprocessor on an FPGA 13 February 2002 11
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4.1  Cache

The original MIPS microprocessor had two caches: an instruction cache and a da
cache. Both are transparent to the user. The original design had four kilobyte dire
mapped caches. The caches are one word (four bytes) wide and mapped using th
10 bits of the address. The cache outputs the data of the selected entry and a 20bit
tag that is possibly the top of the physical address. As the caches are transparent
user they can be changed for different sizes and types. Some regions of virtual me
are non cachable and this overrides he cache hit flag and cache writes.

4.2  Memory Management

The memory management on the MIPS microprocessor constitutes of a 64 entry
(Translation Look-aside Buffer). This TLB is filled using software. The same TLB 
used for both instruction and data accesses but the ‘Yellow Star’ pipeline allows th
the instruction and data accesses are offset by half a clock cycle. This means tha
TLB lookup is only half a cycle long. The TLB is fully associative with 4 Kbyte page
This leaves 20 bits that are used for lookup. If the 20 bits passed to the TLB from a
tual address match an entry then the 20 bits of the physical address of the corres
ing entry are output and the hit line is raised. The 20 bits from the TLB are combi
with the bottom 12 bits of the virtual address to create a 32 bit physical address. 
entries in the TLB are modified by software. The programmer can enter the two 2
translation fields (virtual and physical) along with a region of other information as a
bit value into any entry in the TLB. There is a six bit ASID (Addressable Space ID
field to store the process ID number that the page is meant for. This allows the kern
swap processes without flushing every entry in the TLB. The other flags in the en
are: Noncachable, Dirty (an exception is caused if trying to write to a non-dirty pa
Global (allows any process to access the page) and Valid. On a MMU exception th
bit entry that matched along with the virtual address are written to special register
the kernel to decide which page caused the exception and which to insert or ame

4.3  Coprocessors

The MIPS microprocessor has an interface to handle up to four coprocessors. Co
essors can have 32 general registers and 32 control registers although not neces
all are used. There are four R-type instructions that allow transfers of registers betw
the general register bank and coprocessor general or control registers. These ins
tions have the same delay as a memory load instruction. Although not stated in th
sources all evidence points to the fact that the interface with the coprocessors ha
in the memory stage. There are memory load and store instructions that load and
directly coprocessor general registers to memory. These instructions use the proc
main registers as an address base but use the coprocessor registers as a source
nation. Each external coprocessor has a flag line connected with the CPU that ca
tested and a conditional branch executed dependent on its value. Coprocessor in
tions can be executed directly from the instruction stream. A 25 bit field specifies 
instruction while two of the remaining bits report the coprocessor number.
A MIPS R3000 microprocessor on an FPGA 13 February 2002 12
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4.4  Coprocessor Zero (CP0)

Coprocessor Zero is an internal coprocessor which is used for controlling memor
management, exceptions and some other options. CP0 has a selection of registe
which are used for controlling the behaviour of the processor.

4.4.1  CP0 Interrupt

The status register is one of the more important registers. The register has sever
fields. The current Kernel/User (KUc) flag states whether the CPU is in kernel mo
The current Interrupt Enable (IEc) flag states whether external interrupts are turne
If cleared then external interrupts are ignored until the flag is set again. In an excep
these flags are copied to previous Kernel/User and Interrupt Enable (KUp and IEp)
then cleared so the system moves to a kernel mode with external interrupts disab
The Return From Exception instruction writes the previous flags to the current fla
All these flags are kept in the status register. The Interrupt Mask (IM) field has eig
flags to individually disable any of the external interrupts by clearing any of the fla
The BEV flag controls the exception vector.

The SU four bit entry controls the usability of each of the four coprocessors. If a b
set then the corresponding coprocessor is usable and does not cause a coproces
unusable exception when accessed. If the CPU is in kernel mode CP0 is usable e
the SU bit zero is not set. The Cause register has fields of what the cause of the 
tion was. The five bit Exception Code states the exception number.

TABLE 2. Exception Vectors

Exception BEV=0 BEV=1

Reset - 0xbfc0 0000

TLB Refill 0x8000 0000 0xbfc0 0100

Multiply/Divide* 0xbfc0 0300 0xbfc0 0300

Other 0x8000 0080 0xbfc0 0180

TABLE 3. Exception Codes

Code
Number Exception Name

0 External Interrupt

1 TLB modification

2 TLB exception on a load or instruction fetch

3 TLB exception on a store

4 Address error on a load or instruction fetch

5 Address error on a store

8 Syscall

9 Break

10 Reserved instruction

11 Coprocessor Unusable

12 Arithmetic Overflow

13 Multiply/Divide (‘Yellow Star SM’ only)
A MIPS R3000 microprocessor on an FPGA 13 February 2002 13
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The eight bit Interrupt Pending field indicates which interrupts are pending. The top
bits are connected to the six external interrupt lines. The bottom two bits are writa
and allow the software to cause software interrupts. The two bit Coprocessor Error
states which coprocessor was attempted to be accessed at the time of the Copro
Unusable exception. The Branch Delay (BD) flag states if the exception was cause
an instruction in a branch delay. The EPC register holds the address of the instru
that caused the exception unless the BD flag in the Cause register is set in which
the causing instruction is the next instruction. On any TLB or memory exception t
Bad virtual address register stores the address that caused the exception.

4.4.2  CP0 Memory Management

Two registers (EntryHI and EntryLO) hold the 64 bit data value for transfers with t
TLB. EntryHI holds the Virtual Page Number and the ASID value. EntryLO holds 
Page Frame Number along with the four flags (Noncachable, Dirty, Valid, Global)
access TLB values there are four instructions: a TLB Probe instruction probes the
for an entry that matches the Virtual Page Number in EntryHI, The matching TLB
entry is the loaded into EntryLO and EntryHI, a TLB Read instruction reads the e
pointed to by a the CP0 Index register. The Index register is simply a six bit field tha
used to index the TLB. The TLB Write Index instruction writes the contents of
EntryLO and EntryHI registers to the TLB entry addressed by the Index register. T
TLB Write Random instruction writes to the TLB entry addressed by the Random
ister. The Random register has a six bit field that is incremented every cycle. The
dom register never drops below eight to allow eight safe entries that will not get
overwritten by the operating system.

4.5  Exceptions

The behaviour of the MIPS microprocessor during an exception is to store the PC
the instruction that faulted in a coprocessor register and to make sure that it and no
the already fetched instructions succeeding it are executed. For most instructions
stops the result value from being written to the register bank. The PC is changed t
interrupt vector. The processor then continues from the interrupt vector running e
tion handling code.

4.6  Memory Map

The virtual memory is divided into kernel and user spaces. The bottom two gigabyt
the user space whose addresses are mapped through the TLB. The top two gigab
kernel space divided into three further parts. The first half gigabyte of kernel spac
unmapped and cached. The second half gigabyte of kernel space is unmapped a
uncached. For the two unmapped sections the virtual address has its top three bi
cleared so as to map the virtual sections to start at physical address zero. The rem
gigabyte of kernel virtual space is mapped. An access from a non-kernel mode to
kernel space results in an address error exception.
A MIPS R3000 microprocessor on an FPGA 13 February 2002 14
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4.7  Multiplier Divider

The Multiplier Divider unit takes R-type instructions that designate two registers to
acted upon. The results are written to two registers (HI and LO) with no delay. Th
registers can be read to the register bank. This unit is interlocked and may cause
whole processor to pause.

5  Advanced MIPS Microprocessor Construction

Taking ‘Little Star’ as a base the extra features can be added around it to create ‘Ye
Star’. Unfortunately these features are heavily interlinked and so have to be added
the same time.

5.1  Cache

The two caches run independently but share the physical RAM due to design hav
separate data and instruction memory ports. To share the RAM in the ‘Little Star’
was possible to swap resource allocation by clock phases. In the ‘Yellow Star’ a m
ory access is a lot longer than half a clock cycle as it runs from cache which is fa
than memory. Firstly to solve the sharing problem two cache busses are construc
allow the Harvord architecture to access both data and instruction caches at the s
time.

If a cache miss occurs the whole processor is paused for several cycles until the d
instruction is loaded and the cache is refilled from the external memory. If the acce
a write then during the pause the instruction cache is supplied with the address b
written to. If the instruction cache signals a hit then the value in the cache must b
updated before the processor is released from the pause. This achieves instructio
cache coherency

0x00000000

0x80000000

0xA0000000

0xC0000000

User

Kernel

0x00000000

0x20000000

0xFFFFFFFF

Virtual

Physical
Mapped

Mapped

Cached

UnCached

FIGURE 12. Map of virtual and physical memory
A MIPS R3000 microprocessor on an FPGA 13 February 2002 15
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As the cache in the original design was direct mapped this made the design very
ple. It can simply be made out of RAM. The biggest RAM elements on the FPGA
the select RAMs. All the select RAMs combined give a total of 64 Kbits of RAM. A
that needs to be stored in the cache is the 32 bit RAM value, the 20 bit physical add
and a valid bit. This makes up to a 53 bit field. Unfortunately multiplied by the 102
entries this gives 53 Kbits of RAM used per cache. So there is not enough space o
FPGA to fit both the caches. With the total of 64 Kbits of RAM space it is possible
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Cache
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Cache 2

Data

Coprocessor

Zero

Coprocessor

One

I/O
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CPU

Instruction
Cache Bus

Data
Cache
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FIGURE 13. Cache bus structure

TLB access
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Memory
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FIGURE 14. Instruction cache update

End of write
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create 512 entry caches instead as they are transparent to the user. The 32 bit R
value, the now 21 bit physical address and the valid bit now make a 54 bit field re
duced 512 times. This uses 27 Kbits per cache so for both the instruction and the
cache only 54 Kbits of select RAMs are used. The two 2 Kbyte caches should giv
performance not much lower than that of the R3000 microprocessor. Other cache
binations are possible using the 64 Kbits given.

The bus structure in Figure 13 on page 16 shows the cache bus attached to the m
bus through bidirectional tristated link and not through the cache. The cache inste
writes and reads from the cache bus. This might seem quite strange but the reas
behind it is to allow more than one cache to sit on the cache bus. A victim cache 
caches values discarded by the main cache can be placed along side the main c
This also allows the use of write back caches rather than write through. This give
many more possibilities.

A large range of combinations becomes possible. For example the instruction cac
having a 512 entry direct mapped cache (27 Kbits), the data cache having two 25
entry multiassoceative caches (24 Kbits) and one 128 entry victim cache (7 Kbits
long as the caches have a protocol and a priority order then any number of cache
any type and size can be used. There is a limit of using no more than 12 bits (4 Kby
from the bottom of the address for lookup as this is the portion of the address that i
affected by the memory management. To get around this limit multi-associative ca
can be used to break the 4 Kbyte barrier.

TABLE 4. Direct Mapped Caches

Entries Field(bits) RAM(Kbits)

1024 53 543

512 54 27

256 55 13.75

128 56 7

TABLE 5. Possible direct mapped cache combinations

Cache1
entries

Cache2
entries RAM

1024 128 60Kbits

512 512 54Kbits

TABLE 6. Multi Associative Caches

Entries Field(bits) RAM(Kbits)

1024 54 54

512 55 27.5

256 56 14

128 57 7.125
A MIPS R3000 microprocessor on an FPGA 13 February 2002 17
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5.2  Memory Management

The TLB in the R3000 microprocessor was constructed from a block of CAM (Con
Addressable Memory). Although this would be the most logical method this would
require a tristate buffer for each of the 64 bits in the 64 entries giving a total of 40
tristate buffers. The FPGA does have that many tristate buffers but this would make
TLB take up over half the design space. Instead on ‘Yellow Star’ the TLBs is arran
into a block eight by eight. Each element is only used for matching the incoming 
tual address. If an element hits (matches the incoming entry) then it discharges tw
tristated lines, one going down, the other going across the array. The address of 
matching entry is then reconstituted into a six bit address. The six bit address is us
lookup in a RAM block to get the actual 64 bit entry values. This entry is passed ou
use by either the memory address translation or TLB read instructions explained 
The matching cells only hold the virtual address, the ASID field and the global bit. T
data is duplicated in the block RAMs. This is all that is needed to match an addre
lookup address is in the kernel unmapped space then the input address is passe
instead of the one looked up in the block RAM. The unmapped address will have
top 3 bits cleared so they point to physical address starting at zero. If the uncach
is set in the hit page then the cache is ignored and a memory access is forced. If
dirty bit is not set on a write an exception is triggered.

5.3  Coprocessors

The coprocessors have to link with the central processor to transfer data and to pic
instructions. The only way the coprocessors can get instructions from the instruct
stream is to snoop on the instruction cache bus. Similarly the coprocessors need to
and store memory and so need to be attached to the data cache bus. This theory
forced by the fact that transfers between the coprocessor and the CPU have a de
one cycle and so must happen in the memory stage. The coprocessors get their 
tions by snooping the instruction cache bus. If there is a load from coprocessor ins
tion or a store coprocessor register to memory instruction then the coprocessor w
two cycles before driving the cache bus with the requested register value. Similar
the a load from memory or store to coprocessor instruction the coprocessor waits
cycles before catching the data and sending it to the correct register. It is importan
the coprocessors monitor the halt line from the main CPU so as to not to become
unsynchronized and take control of the data cache bus at the wrong point. Also th
coprocessors have to watch the exception flush line from the CPU to make sure i
commit to instructions.

5.4  Coprocessor Zero

Coprocessor zero was interfaced into the processor just like all other coprocessors
though it is special as it has many other connections to the CPU. The coprocesso
memory management instructions are executed in the memory stage where the d
access TLB lookup gets replaced with the CP0 TLB operation. As an instruction c
never be a CP0 instruction and a memory access it is perfectly legal to take contr
the TLB for this cycle. Most of the registers are writable but also get written when
processor enters an exception. This is solved by multiplexing the write values ma
sure the exception has priority when writing. Most of the construction of CP0 is
A MIPS R3000 microprocessor on an FPGA 13 February 2002 18
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described in the MMU and exceptions sections. (Section 5.2 on page 18 and
Section 5.5 on page 19)

5.5  Exceptions

If an instruction causes an interrupt the processor carries on until the instruction i
the end of the memory stage. This is the last point where the instruction can caus
exception but can also be aborted and the processor flushed of all instructions. T
multiplexer in front of the PC is switched to load the interrupt vector value into the
(Figure 11 on page 11). All instructions flowing through the CPU have a copy of t
address where loaded from. This address is taken from the PC at the time of a loa
passed from latch to latch in each pipeline stage. If the preceding instruction is a
branch that is executed the carried instruction PC value is not updated as the instru
is in a branch shadow. This allows the kernel to return to the code and re-execute
instruction. If the instruction causes an interrupt the EPC (Exception Program Cou
in the coprocessor is loaded with the carried instruction PC value. The processor e
the kernel mode by clearing the user bit and disallows the interrupts by clearing t
interrupt enable flag. Before being cleared these two bits are stored in the previous
mode and interrupt enable flags. In turn the ‘previous’ flags are stored in the old u

AND3B2

D0

D1
O

S0

M2_1

D0

D1
O

S0

M2_1

D0

D1
O

S0

M2_1

D0

D1
O

S0

M2_1

INDEX_OUT0

INDEX_OUT1

INDEX_OUT2

INDEX_OUT3

INDEX_OUT0

INDEX_OUT1

INDEX_OUT2

INDEX_OUT3

INDEX_OUT4

INDEX_OUT0

INDEX_OUT1

INDEX_OUT2

INDEX_OUT3

INDEX_OUT4

INDEX_OUT4

INDEX_OUT3

INDEX_IN0

INDEX_IN1

INDEX_IN2

INDEX_IN3

INDEX_IN4

NAND4

NAND4

NAND4

NAND4

P
U
L
L

U
P

P
U
L
L

U
P

P
U
L
L

U
P

P
U
L
L

U
P

P
U
L
L

U
P

P
U
L
L

U
P

P
U
L
L

U
P

P
U
L
L

U
P

P
U
L
L

U
P

P
U
L
L

U
P

P
U
L
L

U
P

P
U
L
L

U
P

P
U
L
L

U
P

CLK CLKCLKCLKCLK CLKCLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLKCLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK CLK CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

CLK

CLK

ENTRY_LO[31:0]

ENTRY_LO[31:0]

ENTRY_LO_OUT[31:0]

ENTRY_HI_OUT[31:0]
CLK

ENTRY_HI[31:0]

CLK

WRITE

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

P
U
L
L

U
P

P
U
L
L

U
P

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

NAND4

NAND4

INDEX_IN5

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

ENTRY_HI[31:0] ENTRY_HI_A[31:0]

ENTRY_LO_B[31:0]

ENTRY_LO_A[31:0]

INDEX_OUT2

INDEX_OUT1

INDEX_OUT0

INDEX_OUT4

INDEX_OUT5

INDEX_OUT5

AND2

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

D0

D1
O

S0

M2_1

INDEX_OUT0

INDEX_OUT1

INDEX_OUT2

INDEX_OUT5

INDEX_OUT3

INDEX_OUT4

INDEX_OUT5

INDEX_IN0

INDEX_IN1

INDEX_IN2

INDEX_IN3

INDEX_IN4

INDEX_IN5

WRITE

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

E D7

D6

D5

D4

D3

D2

D1

D0

A2

A1

A0

D3_8E

E D7

D6

D5

D4

D3

D2

D1

D0

A2

A1

A0

D3_8E

P
U
L
L

U
P

D0

D1
O

S0

M2_1

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

A0

A1

A2

A3

A4

D[31:0]

O[31:0]
WCLK

WE

RAM32X32S

A0

A1

A2

A3

A4

D[31:0]

O[31:0]

WCLK

WE

RAM32X32S

ENTRY_HI_B[31:0]

A0

A1

A2

A3

A4

D[31:0]

O[31:0]
WCLK

WE

RAM32X32S

A[31:0]

B[31:0]

SB

S[31:0]

MUX2_1x32

A[31:0]

B[31:0]

SB

S[31:0]

MUX2_1x32

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

LOOKUP_VPN19

LOOKUP_VPN18

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

READ

WRITE

OR2

CLK

WRITE

AND2B1

WRITE

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

A0

A1

A2

A3

A4

D[31:0]

O[31:0]
WCLK

WE

RAM32X32S

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

LOOKUP_VPN[19:0],ENTRY_HI[11:6],ENTRY_LO8

CLKCLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

ENTRY_LO_OUT9

OR4B1
HIT

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

CLK

HIT_X

HIT_Y

WRITE_X

WRITE_Y

WRITE_Y

WRITE_X

HIT_Y

HIT_X

VPN[19:0],ASID[5:0],GLOB

ENTRY_LO_OUT9

OR2

AND2

AND2B1

INDEX_OUT5

HIT_BUT_NOT_VALID

FIGURE 15. Memory Management Unit Schematic
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mode and interrupt enable flags. If the exception was a memory management exce
then the accessed virtual address is stored in the FaultAddr register and the Entr
and EntryLo registers are filled with the faulting page entry in the TLB. If the TLB
fault was caused in the instruction fetch stage then the forwarded PC address of 
faulting instruction is passed onto the datapath in the ALU stage so in the memor
stage it recreates the MMU fault for recording. The exception code is carried alon
with the PC of the instruction. If an instruction causes an exception in the further sta
of the pipeline the instruction’s carried exception code is checked for the valid flag
if the instruction has not caused an exception yet then its code gets replaced with
code of the exception just detected. This exception code gets written to a CP0 re
By recording these values to CP0 it is possible to recover from any exception.

5.6  Memory Map

The processor has to communicate with the outside world and so a serial port wa
memory mapped. The serial port has two ten entry input and output FIFOs. Read
from the serial port gives: an eight bit value of the entry at the front of the input FI
a valid bit of the value, and the output FIFO full bit. There are two addresses where
serial port can be read. The first allows reading of the value and popping it off the s
and the second allows a snoopy read. The input value valid bit is also connected 
external interrupt input line. As the processor starts at the RESET vector the memo
that address has to be a prewritten RAM. It is possible to preset the RAM blocks in
FPGA. A very small program was written in the RAM blocks to take the data from t
serial port and write it to RAM and then execute it. Firstly it takes a three words as
program counter to jump to when the program is loaded then, the start address wh
write the program and the length of the program in bytes. Then the program strea
sent. The loaded program can be a more sophisticated loader. The board has tw
tons and an eight segment bargraph display that are mapped. An extra button wa
reserved for driving the reset line. There is a down-counter that can be set to a va
and every cycle when the processor was not halted it drops by one. When it reac
zero it raises an interrupt line. This down-counter is only activated when the proce
is in interrupt enabled mode otherwise it does not count down. The main RAM wa
mapped at the bottom two megabytes of the physical address space.

5.7  Multiplier and Divider

The multiplier and divider on the R3000 microprocessor have complex interlocking
fit the pipeline. The interface to the multiplier and divider was left empty and the un
never implemented as they would have probably been too big for the FPGA. Also
time scale was too tight to implement more large components with full testing. Th
interface allows the unit to take the values from the forwarding paths or register b
and act on them. The result is multiplexed onto the datapath at the end of the AL
stage on a Move From HI/LO instruction. If the instruction comes before the multi
plier/divider has finished the processor is paused until the data is ready. An elem
makes sure that is the data ready signal comes at any point the processor is only
released on the same clock phase as it was halted. This allows an asynchronous
plier/divider. A flag in Coprocessor zero register switches the processor into a ‘Ye
Star SM’ (Software Multiplier). In this mode: multiply, divide and access HI/LO reg
ter instructions cause an exception. These instructions cause a different exception
A MIPS R3000 microprocessor on an FPGA 13 February 2002 20
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Another flag can switch the exception vector for these exceptions to (0xbfc0 0300)
Multiplier/Divider code.

6  Debug

6.1  Binutils and GCC

In order to write reasonable programs it is necessary to make an assembler and 
piler. GNU Binutils and GCC can be compiled to create a cross compiler for a MI
unknown-elf. As there are no operating systems on the chip the target does not h
any way of input or output or any operating system functions. The compiler and as
bler need to be specially set up to create programs that can run on a system with
operating system. A program (Progload) was written to get the three pieces of info
tion from compiled programs and then send them over the serial port. This allowed
program to be compiled and then sent to the board for running.

6.2  Charlie’s Angel

Charlie’s Angel is a front end debugger for communicating with an external board
using a serial connection. The board must be running a program to process the c
mands from the Charlie’s Angel. This program was written and then sent to the b
using Progload. The back end responds to a host of instructions from the front end
stepping or multi-stepping through code the chip uses the down counter to set the
number of instructions to take before interrupting back.

0x00000000

0x00200000

0x20000000

RAM

0x1FC00000

BOOT ROM

SERIAL PORT
DISPLAY

Unmapped

0xF00
0xE00

0x1FF
0x000

COUNTER 0xD00

FIGURE 16. Physical Memory Map

MUL/DIV CODE 0x300

0xC00
0xB00

CACHE HIT%
CODE/BRANCH
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7  Results

Both ‘Little Star’ and ‘Yellow Star’ were tested and debugged and functioned correc
under many with many test programs including the SPIM (MIPS microprocessor s
ware simulator) self test code. A simplified version of ‘Little Star’ only allowing wor
loads and stores was tested running code from the on-chip RAM blocks and achi
speeds of 50 MHz correctly executing a range of instructions especially selected to
the longest paths. This version is probably capable of running at higher speeds b
on-board clock was limited to 50 MHz. ‘Yellow Star’ was tested running memory
mapped code from cache without fault. There are units installed in the processor to
parameters like the cache hit rate and periods between branches and output the 
collected through memory mapped registers. Although these have been tested an
found to be working they still await execution of large complex code for valid resu
With the smaller programs executed for testing these units have replied 99.9% ca
hit rate as the cache is bigger than the program and all periods between branches
eight or five as this was the loop length of the test program. The ‘Little Star’ is ma
from 16,556 gates and could be further compressed while ‘Yellow Star’ uses 63,3
gates (Table 7 on page 23). These gate counts are derived from the simulator. Alth
the Virtex claims to be capable of containing up to 300,000 gates a 30,000 gate d
uses a quarter of the chip. This is understandable as blocks that the Virtex is made
can rarely be used to their full potential. This means that on a design like this the
imum gate count that can fit onto the Virtex is about 120,000 gates, enough for an a
of up to seven ‘Little Star’ processors. By optimising the design and halving the cac

FIGURE 17. Screenshot of Charlie’s Angel
A MIPS R3000 microprocessor on an FPGA 13 February 2002 22
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two ‘Yellow Stars’ can fit onto a Virtex and run in parallel. One ‘Yellow Star’ can em
late another device like a floating point unit.

8  Conclusion

The project was completed successfully seemed to run all MIPS code correctly
although not fully tested yet. This was a very taxing project and a lot was learned f
it. One of the more important lessons is that testing does actually take longer tha
implementation. Even though each unit was tested before being integrated with th
processor when competed they still failed in situations never conceived. To create
large design on any platform it is important to use the components that are cheap in
technology. On an FPGA, RAM blocks are very cheap and tristate buffers are cos
To create a small and fast design RAM blocks were used where possible to repla
more expensive components. Tristate buffers were avoided and only used where
sary e.g. Data cache bus can be driven by the: processor, memory, cache or cop
sors registers so having a 32 bit wide 20 input multiplexer would not be feasible.
Another good example of this is the construction of the TLB where again using a 64
wide 64 input multiplexer would have been excessive to avoid tristate buffers. A c
promise was reached and worked very well. The same problem arises in the con
tion of the register bank and the shifter but in these cases the solution was create
without the use of tristate buffers by using gates and RAM blocks. This is a comm
theme that occurs when designing for FPGAs, a result bus has to be driven from a
number of places. There is no one solution to the problem but new solution has to
created every time very often they have similarities with the ones solved here. Gre
lessons were in the ways to approach a problem.

After creating ‘Little Star’ a lot of time was spent trying to understand everything the
is to know about exceptions and caching. When designing the exception handling e
possible instruction and state was considered before any implementation was do
The first implementation of the exception handling circuits used a multiplexer to r
in the exception vector to the PC and a few registers to store the instruction PC. T
took a few minutes to implement and more was learned from looking at an excep
happening in simulation than over the several days studying it. Inserting test unit in
working project that will give a lot of useful information. Having a modular design
with clean interfaces allowed large changes very late in the construction which is w
happened several times but luckily without the need to make changes to the interf
The processors can be used as a base for testing other units as they allow: comp
of large pieces of code, step by step testing and high performance. Ultimately it is

TABLE 7. Gate count statistics

Component Gate count

Yellow Star
(excluding cache)

63,327

Little Star 16,556

MMU 30,892

ALU 2,102

Shifter 2,220

Register Bank 1,061
A MIPS R3000 microprocessor on an FPGA 13 February 2002 23
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the
IPS
hoped that these processors could be placed into systems that can easily be plac
monitor or control peripheral devices or test components.

MIPS(R) and R3000(R) are registered trademarks of MIPS Technologies, Inc. in 
United States and other countries. Charles Brej is not affiliated in any way with M
Technologies, Inc.
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