
Forward and Backward Guarding in Early Output
Logic

Charlie Brej and Doug Edwards
School of Computer Science, The University of Manchester,Oxford Road, Manchester, M13 9PL, UK

Email: {cbrej,dedwards}@cs.man.ac.uk

Abstract—Quasi Delay Insensitive asynchronous logic is a very
robust system allowing safe implementations while requiring min-
imal timing assumptions. Unfortunately the design methodologies
using this system have always yielded very slow designs. Early
output logic is a method which aims to improve the performance
of QDI circuits without decreasing their robustness.

In order to force QDI restrictions on early output circuits a
form of guarding is necessary. This paper presents a new form
of guarding which allows partial stage completion allowing de-
synchronisation of inputs. This is shown to be highly advanta-
geous in cases where the previous style performed poorly. Because
the two styles can be mixed, the designs no longer suffer from
very poor performance of some QDI constructions.

I. INTRODUCTION

Unlike synchronous circuits which heavily rely on timing
assumptions, some forms of asynchronous circuits can reduce
the timing assumptions to an easily met set, even on a very
inconsistent manufacturing process [1]. The removal of timing
assumptions can also increase the speed of the cir- cuit as no
timing margins have to obeyed. Unfortunately this comes at a
price in area, power consumption and speed beyond what is
gained by the removal of timing margins.

A. QDI logic
Asynchronous circuits are grouped in classes representing

their robustness. The Delay Insensitive[1] (DI) class is the
most robust class but its restrictions make it impossible to
build computing circuits (circuits with data dependant func-
tionality). The class with the smallest compromise in robust-
ness is called Quasi Delay Insensitive [3](QDI). QDI allows
isochronic forks[4] which in turn allow the generation of com-
puting circuits. These circuits are still heavily restricted in their
operation and methods such as dual-rail encoding must be used
to communicate data in a delay insensitive manner.

Dual-rail encoding uses two wires to represent a single bi-
nary value. A transition on each wire (labelled zero and one)
signifies a transmission of a data value. Each transmission is
responded to with a transition on an acknowledge wire back to
the data source. These transmissions of data, separated with an
acknowledge transition, can be thought of as tokens. To make
computing components easier to implement, both the data and
the acknowledge signals can be returned to zero between trans-
missions. This protocol is often referred to as four-phase or
return-to-zero.

B. DIMS logic
A common method of generating QDI asynchronous circuits

is Delay Insensitive Minterm Synthesis [5] (DIMS). DIMS
gates and latches use the four-phase (return to zero/null) dual-
rail protocol. DIMS gates, like one shown in figure 1, rely
on representing the input state space in a set of ‘one hot’
minterms (generated by a set of C-elements[5]) and allow each
output wire to gather its set of minterms using OR gates. One,
and only one, C-element in the gate will activate once all
inputs become valid. The output will then become valid and

will remain so until all inputs have transitionned back to null.
The output is only generated once all inputs are valid and
released only once all inputs have returned to null. This strong
sequencing ensures that an acknowledge will only arrive to
gates which have presented data and is only released once all
the inputs have accepted the acknowledge (and released their
data).

Fig. 1. DIMS Gate
C. Early output logic

The DIMS gate is both large and slow due to the restriction
that no output is generated before all inputs have arrived (or
released before all inputs have been released). This forces the
gate to use large and slow C-elements and stops it from out-
putting data known to be correct with just a subset of inputs
present.

Early output gates [6] do not possess this strong sequenc-
ing property and instead only perform the logical part of the
operation. An example gate, shown in figure 2, is constructed
from an AND gate and an OR gate. This construction allows
the generation of outputs once a sufficient number of inputs
has arrived. In the case of the early output OR gate pictured,
the Q1 output is activated when either A1 or B1 is active.
These early output states allow the gate to perform at average
rather than worst case timing.

Fig. 2. Early Output Gate
D. Hazards

Early output logic is faster and smaller than DIMS logic but
this is achieved only by removing the strong sequencing, of the
gates, used to ensure all inputs have contributed to the opera-
tion. Early output gates cannot be used as a direct replacement
for DIMS gates as acknowledge signals can propagate to the
input latches before they have presented data. To ensure all
input latches are ready to be acknowledged, early output logic
relies on ”guarding logic”[7][8][9].

Guarding logic is used in early output designs to ensure the
correct sequencing of the request and acknowledge signals on
input latches. The three variations of guarding logic presented
in this paper rely on a system of ‘validity’. Validity represents
the permission to propagate the acknowledge signal. Latches
generate their validity once they have data which can be ac-
knowledged. This can be done by using the OR of their data

output pair. In most latch designs (such as the half latch in fig-
ure 3), this signal is already available and no additional logic
needs to be added. The latch has to wait for the validity sig-
nal to arrive on its input before acknowledging. This is done
with a C-element combining the latch’s internal acknowledge
with the validity to generate a guarded validity which is safe
to send back to the input latches.

The simplest guarding style collects the validity signals,
from all gate inputs, in a C-element and generates the gate’s
validity. This will protect against latches receiving their ac-
knowledge before asserting data, but the resultant circuit will
not be QDI.

Fig. 3. Early Output Latch
II. FORWARD GUARDING

In order to create fully QDI early output circuits, the method
of guarding used must ensure all data signal pairs have re-
turned to zero (null) before the next data cycle can begin. To
ensure a full reset has been achieved, each data wire pair must
be fully cycled to a valid state and then back to null.

One method of cycling all wire pairs is to connect the va-
lidity of each wire pair to a validity gathering tree[8]. This
ensures that only when all inputs have arrived and all wire
pairs have become valid will the validity reach the output of
the stage and be acknowledged.

A. Circuit composition
Figure 4 shows the layout of a early output gate with ”For-

ward Guarding”. The gate data output validity is gathered with
the validities of the gate inputs in a C-element to generate the
gate validity. The validity of each gate signifies the validity of
all stage inputs and data wire pairs which contributed (directly
and indirectly) to the gate.

Fig. 4. Forward Guarding
III. BACKWARD GUARDING

Backward guarding is a complementary technique to the
forward guarding style. Rather than ensure the cycling of data
wires on the validity propagation, the guarding is done on the
acknowledge propagation. Validity can be generated locally
and an acknowledge signal can be propagated to some parts
of the circuit while other parts are waiting to become valid.

A. Circuit composition
Figure 5 shows the layout of an early output gate with back-

ward guarding. The validity of the gate is taken from the va-
lidity of the data output. These validities are then gathered in
the next gate the output feeds into, along with the acknowl-
edge the next gate receives, to generate an acknowledge to

propagate back to the input gates. The validity received by
the gates on their inputs could be generated locally by placing
OR gates across each input pair. Generating the validity on the
output of a gate rather than on the inputs reduces the number
of components and allows composition with forward guarded
gates. As gate outputs often fork, the generation of the data
pair validity in one place allows the gate-count used to be re-
duced. The composability of backward and forward guarded
gates can be assured by virtue of their protocol sequencing.
As both protocols have the same sequencing and rely on the
same set of assumptions, it is possible to mix the two systems
in a single stage. The local validity generation allows the fast
propagation of the validity while delaying the synchronisation
with the data generated further towards the inputs of the stage
to be delayed. As the acknowledge can progress through gates
which have both inputs valid, often a set of inputs which have
already contributed to all their destinations can be acknowl-
edged before other inputs arrive.

Fig. 5. Backward Guarding

IV. ANALYSIS

To examine the performance implications of the styles a
number of measurements were taken. The frequency of early
outputs was measured across a range of commonly used cir-
cuits, and the performance of two circuits was observed when
implemented with the two different guarding styles.

A. Early output cases
To show the suitability and effectiveness of early output

logic on a variety of circuits, the ability to generate early out-
puts with a varying number of valid inputs was studied. The
test was conducted on 10 commonly used logic designs, mostly
taken from a synchronous microprocessor core. The circuits
were: a seven segment encoder (segment A), an ALU slice,
an 8 input AND gate, bit 8 of an adder, a MIPS branch unit,
an 8 bit compare-if-equal unit, an 8:1 multiplexer, a MIPS
processor memory shift unit, bit 4 of an 8 bit shifter and an
8 input XOR gate. All designs were taken from synchronous
implementations.

The designs were then fed into the ”early tool”[10] in order
to determine their early output abilities. The early tool applies
all possible combinations of input states (zero, one or null) and
analyses the circuits ability to generate results with varying
numbers of valid inputs.

B. Balanced stage
In order to demonstrate the different behaviours of forward

and backward guarding, two early output circuits were con-
structed. Each circuit was then guarded with each of the two
QDI guarding methods and the resultant systems were ob-
served in a test bench wrapper.

The simulations were performed at gate level. Various com-
ponents were given integer gate delay numbers. AND/OR
gates have the delay of one while C-elements have a delay
of two. Inversion delays were ignored or combined into gates.
Only 2 and 3 input gates and C-elements were allowed in de-
signs to match the cells available in current tech libraries.

The balanced stage circuit is a 16 input XOR gate con-
structed from a tree of two input XOR gates. The output of
the gate is passed to the 16 latches driving the inputs of the
XOR gate. The test is designed to determine the behaviour of
the guarding on stages which have: a balanced computational
distance for each input, no early output cases and simultane-
ous input arrival times. The XOR gate has a logic distance of
8 gates on all inputs, no early output states, and all inputs are
connected to the same source (thus have simultaneous arrival
times).

C. Adder
Complementary to the balanced stage is the adder example

circuit. The adder is a 64 bit ripple carry adder. With a com-
putational distance varying from 3 to 129 gates and containing
many early output cases with bit level pipelined independent
inputs, the circuit poses a different challenge to the guard-
ing logic. This setup simulates the effect on an adder when
performing operations on very long integers.

V. RESULTS

A. Early output cases
Early output generation can be demonstrated by observing

the behaviour of circuits under all possible input combinations.
However this can be seen as an unfair test as the input arrival
order and data is random while in the actual implementation
the data is rarely random. Some benchmarks presented would
show an improvement while others would show a drop in the
frequency of early outputs when connected to realistic input
sources.

Figure 6 shows the presence of early output states dependant
on the percentage of valid inputs present. Most input circuits
have very similar inputs present to output probability patterns.
There are three circuits which do not follow the general trend.
The XOR circuit can not generate an output without the pres-
ence of all inputs and so does not move from zero until valid
inputs have reached 100%. The two better than average per-
forming circuits are the AND gate and the compare-if-equal.
The AND gate requires just one input to be zero in order to
determine the result. This increases the probability of gener-
ating an output to 50%, as the probability of not being able
to generate an output halves with each successive input ar-
rival. Structures composed from large AND or OR gates give
very high output probability with low numbers of valid inputs.
The compare-if-equal is composed with XOR gates across in-
put pairs and a large OR gate. The large OR gate gives many
early output states in the design but not as many as the AND
gate due to the XOR gate’s negative effect.

The other designs have a very similar curve on the graph
despite their quite varied logical functions and logical depths.
Generally these designs will generate an output with, on av-
erage, 75.6% of inputs valid.

B. Balanced stage
The balanced stage benchmark is designed to observe the

effect of the guarding logic choice on circuits which have few
or rarely occurring early output states. While both guarding
styles perform the same task and have the same protocol, the
difference in sequencing of operations gives variations in the
performance.

The design was placed in a testbench which generated in-
puts and consumed the results. The circuit was then simulated
for 1,000,000 gate delays (120ms) and the number of results
generated was counted. In the balanced stage example, the
performance of the forward guarded circuit was 15,625 oper-
ations in 1,000,000 gate delays. The backward guarded circuit
performed 22% slower at just 12,195 operations in 1,000,000

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

O
ut

pu
t p

ro
ba

bi
lit

y
(%

)

Inputs present (%)

7seg
Adder

ALU
AND

Branch
CmpEQ
Memory

MUX
Shifter

XOR

Fig. 6. Early Output Cases

gate delays. To determine the reason for the difference in per-
formance of different guarding styles, the sequencing of the
systems must be examined.

Forward guarding processes the presence of inputs and the
validity of the circuit as soon as the inputs arrive. This validity
checking is done in parallel with data computation. Backward
guarding, on the other hand, only starts to test for circuit and
input validity once the result has been generated. Because of
the parallelism implemented in the forward guarding method
the circuit can be validity checked faster and thus an increase
in performance is observed.

C. Adder benchmark
As stated in section 5.1, individual bits of the adder have

many early output states. The adder benchmark ensures the
presence of early output states by keeping both inputs at zero,
allowing the generation of carry out without the presence of
carry in. The ripple style carry system ensures a variation in
the bit result generation times. Such a system is often thought
of as having skewed wave-front pipelining as the lower bits
are generated ahead of the higher end bits. This benchmark
measures the ability of guarding logic to take full advantage
of early output cases and varied logic depth along with its
ability to deal with late unnecessary inputs.

Again the test circuit was simulated for 1,000,000 gate de-
lays and the number of cycles completed was recorded. For-
ward guarding logic completed 1,270 additions while the back-
ward guarded circuit performed 17,280. This demonstrates a
case where the use of backward guarding logic gives over 13
times the performance of forward guarding logic. In the worst
case operation (zero minus one) the backward guarded version
only managed 1,825 operations while the forward guarded ver-
sion was unaffected and again completed 1,270 operations.

To present the reasons for the vast difference between the
circuits the behaviour of the guarding styles is explained.

1) Forward guarding: The cycle time of the forward
guarded circuit is around 788 gate delays. As mentioned be-
fore, the longest path through the adder is 129 gates. In the
forward validity gathering phase, the critical path is from this
farthest input to the carry out latch. For each gate along the
path, the signal must pass through a C-element (equalling two
gate delays), totalling in 258 gate delays. In the acknowledge
phase, the signal must reach the furthest input while pass-
ing through a C-element for each fork in the critical path (65
forks/C-elements or 130 gate delays). Once the acknowledge
reaches the furthest away input, the data can then be released
and the validity starts its dropping cycle passing through the
same elements as it did on the rising phase and consuming an
equal amount of time.

As in this example the worst case path is much longer than
the average, the validity cycle time being extended to worst

case has a highly negative impact on the performance.
2) Backward Guarding: Backward safe guarding described

in section section 3 allows a subset of inputs to move to back
into the set phase once all dual-rail wire pairs they effect have
become valid and returned back to the null state. The other
input subset with members which have not become valid is
halted until all inputs are presented and subsequently reset.
This action can be repeated allowing the result of the stage
to become several stages ahead of some inputs. Unfortunately
at each cycle, the halted set of inputs grows, eventually ab-
sorbing the whole stage. This partial completion effect has the
behaviour of collecting ”anti-tokens” [9] to absorb the unnec-
essary inputs. When a stage can generate an output with some
inputs missing, in anti-token designs, the inputs which have
yet to present their data, may receive an anti-token. The anti-
token will then consume one piece of data when it arrives.
This allows the stage to continue operating without waiting
for the remaining input to arrive, yet not desynchronise it-
self from that input stream. Although in this arrangement the
anti-tokens are unable to progress through the input latch to
the previous stage, multiple anti-tokens can be collected in a
single stage.

Anti-token generation and stacking can be demonstrated in
an example circuit shown in figure 7. The circuit has been
abstracted so that one wire represents a full bundle of three
wires (Data0, Data1, Valid) and the other wire represents the
acknowledge. In the first state all inputs are present with the
exception of input A. This late and unnecessary input cannot
be acknowledged until its token has arrived. This in turn stops
the progress of the acknowledge signal from reaching either it
or any inputs which are combined (directly or indirectly) with
the path of inactivity due to the non-presence of the input. In
this case the only other input effected is input B while the
other inputs are acknowledged (fig. 8).

The release of all other inputs in this case also drops the
output and the acknowledge signal is released and shortened
down to the single gate which is waiting for one of its inputs
to be released signalling the acknowledge is being propagated.
Although input C becomes reset it cannot become valid as a
gate it feeds is propagating the acknowledge (fig. 9).

All other inputs can now become valid. Again if the set of
inputs is sufficient to generate a result this stage can complete
and generate another acknowledge pulse. Each acknowledge
pulse is effectively an anti-token.

Each anti-token waits for the presence of valid data on all of
its inputs before acknowledging them and does not release the
acknowledge signal until all inputs have returned to zero (re-
leasing their validity indicates they have accepted the acknowl-
edge). This allows the anti-tokens to stack and not merge. Un-
fortunately most stages are rarely able to keep more than one
anti-token. Stages with arrangements of interleaved AND and
OR gates and a large variation in logical distances are very
well suited to the backward guarding style.

The carry ripple adder in the benchmark circuit has that ex-
act arrangement which allows an acknowledge to be sent as
soon as a result is ready (which is much sooner than the worst
case). The variation in logical distances allows the closest in-
puts to de-assert their data and allows the stage bit outputs
to release their acknowledge sooner. This then allows a new
computation to start while the acknowledge wave progresses
down to the further away inputs. The inputs furthest away will
be acknowledged once the signal reaches them. The wave can
be broken off from the initiating acknowledging latches and
progress down towards the remaining inputs while the top end
of the adder starts processing the next wave of data.

VI. CONCLUSION

This paper has presented some results and diagnosis of early
output logic circuits. The number of early output states with

Fig. 7. Backward Guarding Circuit:Initial Inputs

Fig. 8. Backward Guarding Circuit:Acknowledge Arrival

Fig. 9. Backward Guarding Circuit:Input Withdrawal

Fig. 10. Backward Guarding Circuit:Anti-Token Stacking

varying number of valid inputs of many common circuits has
been shown along with the reasons for their differences in their
behaviours.

The early output circuits need a form of guarding to ensure
correct operation. The two types of guarding presented (for-
ward and backward) have complementing performances when
applied to circuits with or without variations in logic depth
and input arrival time. The use of the better suited guarding
system has been shown to have a large effect on the perfor-
mance of the system. This has been demonstrated in the adder
example where a 13 times throughput improvement can be
achieved with the use of backward guarding, and to a smaller
extent in the balanced stage example where the use of back-
ward guarding gave a performance decrease of 22%.

As common circuits are usually a combination of always
needed early-arriving inputs and rarely needed late-arriving
inputs, no single strategy is perfect. Backward and forward
guarding can be mixed (not just in separate stages but also
in a single stage). The resultant stage can take advantage of
parallelising the validity checking of ‘on-time’ inputs with the
logical operation, while still being capable of completing the
operation before the arrival of the late inputs. The late arriving
unnecessary inputs need only to handshake with a gate much
closer to them, rather than communicating with the output
latch.

REFERENCES

[1] T. M. Mak, ”Is CMOS more reliable with scaling?”, IEEE Int. On-Line
Testing Workshop, July 2002.

[2] J. A. Brzozowski and J. C. Ebergen, ”On the delay-sensitivity of gate net-
works”, IEEE Transactions on Computers, 1349-1360, November 1992.

[3] A. J. Martin. The limitations to delay-insensitivity in asynchronous cir-
cuits. In William J. Dally, editor, Advanced Research in VLSI, pages
263-278. MIT Press, 1990.

[4] K. v. Berkel, ”Beware the isochronic fork”, Integration, the VLSI journal,
vol. 13, pp. 103128, June 1992.

[5] D. E. Muller and W. S. Bartky, ”A theory of asynchronous circuits,”
Proceedings of an International Symposium on the Theory of Switching,
Cambridge, MA: Harvard Univ. Press, pp. 204-243, 1959.

[6] C.F. Brej, ”An automatic synchronous to asynchronous circuit convertor”,
11th UK Asynchronous Forum, 2001.

[7] Charles L. Seitz, ”System Timing,” in introduction to VLSI Systems,
Carver Mead & Lynn Conway, eds., Addison Wesley, Reading, MA, 1980,
pp. 242-252

[8] A. Kondratyev and K. Lwin, ”Design of asynchronous circuits using syn-
chronous CAD tools”. Proc. DAC’02, New Orleans, USA, 2002,

[9] C.F. Brej,”Early Output Logic using Anti-Tokens”, Twelfth International
Workshop on Logic and Synthesis (IWLS 2003), May 2003.

[10] ”Early resynthesis tool”, http://www.cs.man.ac.uk/ brejc8/early/

